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Abstract

This paper presents an ongoing study in the area of Human-
Robot Collaboration, more precisely collaborative manipula-
tion tasks between one robot and multiple people. We study
how different trajectories influence people’s perception of the
robot’s goal. To achieve this, we propose an approach based
on Probabilistic Motor Primitives and the notion of legibil-
ity and predictability of trajectories to create the movements
the robot performs during task execution. In this approach we
also propose combining legible and predictable trajectories
depending on the state of the task in order to diminish the
drawbacks associated with each type of trajectory.

Introduction

Robots are now evolving from being used as mere tools
that help fulfill a task to entities that work and co-habit
alongside humans. In order to achieve such milestone,
robots’ intentions need to be predictable so as not to con-
fuse, surprise or even scare humans.

This paper presents an ongoing work that focuses on how
different kinds of motions affect the transmission of intent
during a collaborative manipulation task, between a robot
and multiple people. Specifically, the paper studies the ef-
fects in both the fluency of the collaboration as well as in
the efficiency of the task.

An example of a task we envision consists in having a
robot serving as a bartender, with the task of filling a cup of
water to one of several customers. In this case, if the robot
performs a non-predictable motion, human users may be-
come confused regarding as to whom the robot is serving.
On the other hand, if the motion is clear, the chance of mis-
takes by the users decreases and the fluidity of the task in-
creases.

Formally, the question that drives this work is “In a mul-
tiple user collaborative manipulation task, what is the best
type of trajectory to perform, in order to minimize confu-
sion between users regarding the robot’s target?”

We present an approach that combines two types of tra-
jectories, legible and predictable (Dragan et al. 2015), in or-
der to exploit their strengths and minimize the consequences
of their drawbacks. Moreover, the approach adopts a mo-
tion representation that is not only suitable for learning from
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demonstration, but also allows for efficient generalization of
trajectories to new targets (Maeda et al. 2014).

The remainder of this document is structured as follows.
We start by reviewing related work. We then explore the sys-
tem’s architecture, detailing how the robot decides which
cup to serve and the best movement to perform. We finish
with some final comments on the work that has been done
and what is left to do.

No experimental results are provided since, as of the writ-
ing of this paper, the studies are still under way. However,
we expect that this work can contribute with more insights
regarding how to build effective systems for interactions be-
tween people and robots in small spaces without hindering
each other’s performances.

Related Work

The use of motion learning in manipulation tasks is not
new, and has been widely use in several tasks requiring a
precise control of the robot’s pose. For example, the work of
(Pais et al. 2013), they propose learning from demonstration
using kinesthetic teaching, in which they learn the model for
the robot’s movement in a specific task and the constraints it
needs to respect in order to be successful.

In this work, the motion decision by the robot is per-
formed using a framework called Probabilistic Movement
Primitives (ProMP) (Maeda et al. 2014), which allows a
robot to learn how to perform a manipulation task by ob-
serving a set of demonstrative trajectories for the same task
and then extrapolate the correct way to move. ProMP are an
alternative to Interaction Primitives (IP), defined in (Amor et
al. 2014), that could not combine multiple movement primi-
tives and as such could not adapt very well to changes during
task execution. The ProMP allow the combination of multi-
ple movement primitives since they create a probability dis-
tribution over all the recorded trajectories. Therefore, in the
prediction step it is possible to combine information from
various primitives, obtaining a better movement trajectory.
In the same work Maeda et al. also show how this frame-
work behaves during a collaborative task of assembling a
box. Using ProMP the robot could easily adapt to changes
in the conditions of the task, like the box flipping over.

One important aspect in any collaborative task, either
among humans or between humans and robots, is the easy
understanding of intention without the need to ask the other



what they are doing (Strabala et al. 2012). This aspect led
to the study of how to convey intention through the way we
move during the execution of a task, the way we approach
an object or our pose while we perform a task. There have
been various works about how to make robots express the
intent of a movement more clearly while they perform a task
(Strabala et al. 2012; Breazeal et al. 2005; Jung et al. 2013;
Gie 2013). Most of the results in these studies are based on
animation and creating human-like movements based on an-
imation principles (Gie 2013); and on the study of how peo-
ple physically communicate intention prior to giving an ob-
ject to another one or to a physical interaction (Strabala et
al. 2012).

The most recent studies have shown that different ways
to create a trajectory yield different results in the perception
of motion intention by a human partner. They show that a
movement that is purely efficient, where efficiency is con-
cerned with energy usage and collision avoidance, is not
always the best movement to convey intent and can some-
times scare people. A better way to transmit intention was
shown to be movements that are not purely efficient, but that
encompass a certain smoothness and also an earlier devia-
tion towards the motion objective, allowing this way for the
human partner to understand more easily what the robot is
doing and why, and react more accordingly.With these re-
sults, Dragan et al. have defined the notions of legibility
and predictability of a robot’s motion and how a robot can
plan trajectories that follow those notions (Dragan and Srini-
vasa 2013; Dragan, Lee, and Srinivasa 2013). In more recent
work, Dragan et al. investigate the effects of predictable and
legible motions in the perception of people about the ob-
jective of the robot’s movement during collaborative tasks
(Dragan et al. 2015). They show that when the human part-
ner does not have previous knowledge about the robot’s tar-
get, legible motions are better at conveying the movement’s
intent. On the other hand, when the human has an idea of
what the robot’s objective is, predictable motions are better.

System Design

In order to investigate the impact of different kinds of mo-
tions in the human perception of the robot’s target in col-
laborative manipulation tasks, we use the notions of legible
trajectories and predictable trajectories, defined by Dragan
et al. in (Dragan, Lee, and Srinivasa 2013), in a system that
would interact with multiple people at the same time. The
system is integrated in a Baxter robot that will perform the
collaboration task with the humans.

The system is composed by three main modules: one
module is responsible for processing visual data in order to
get information about the workspace; one module is respon-
sible for social interactions with the human partners in the
collaboration task and the last module is responsible for de-
termining the current objective of the robot and generating
the arm movement to fulfill the chosen objective. Figure 1
depicts the architecture of the system as a whole, as well as
the data flow between the different modules in the system.
The communications between different modules is done us-
ing Robot Operating System (ROS) topics since this allows
the modules to alert the interest parts that there are updates,
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Figure 1: System’s architecture and interactions between
each of the system’s modules (vision, movement decision
and social interaction) and their sub-modules.

whilst simultaneously performing their tasks. Communica-
tions inside a module are done using ROS services because
these typically involve requests for a sub-module to perform
a specific task without which that module cannot continue
its task.

The vision module receives data from a Kinect V2 cam-
era, both color and infrared (IR) frames, and is responsi-
ble for identifying the possible objectives in the scene. In
our case the objectives are cups that are carried by the hu-
man participants. These cups are color-coded and the vision
module segments the received color images, looking for the
colors of each cup. The segmentation process uses the HSV
color space as it allows us to adjust the color parameters only
by focusing in finding the smallest hue interval that only
identifies the cups. This because the other two parameters
of HSV, saturation and value, are related only with lighting
conditions and by keeping those conditions the same, the
segmentation process becomes a lot more straightforward.

The social module is responsible for making the interac-
tion more natural and human-like. As shown in (Mumm and
Mutlu 2011), when humans and robots need to interact in
close proximity, the closer a human psychologically feels to
a robot the better the communication between them is. This
leads to a better collaboration between both parts. Because
of this, the social component is really important for a col-
laboration task to be performed efficiently and in the system
developed the social module takes cues from the movement
decision module regarding changes in facial expressions and
speech interactions that better adapt to the task progression.
These social interactions occur by displaying happy expres-
sions when a movement ends successfully, displaying a sad
expression when a problem occurs and needs correcting or
using speech interactions to correct the human partners if
they are acting wrongly.

The movement decision module is the system’s central
module and is responsible for deciding when to select a next
objective and which is the next objective. Besides this, the
module is also responsible for communicating with the so-
cial module to signal when new interactions are necessary.
In terms of the movement decision, the module chooses for
next objective the closest one among all remaining and if
there is a draw between two or more objectives then the sys-
tem chooses one randomly. With the target selected, the sys-



tem uses the Collaborative Probabilistic Movement Primi-
tives (CoPMP) model, (Maeda et al. 2016) - created based on
the trajectories demonstrated to the robot for the predictable
trajectories or for the legible trajectories, depending on if he
robot is performing predictable or legible trajectories - to ex-
trapolate the best movement to achieve the given objective
by combining the information available from those demon-
strated trajectories. The resulting trajectory, created by the
CoPMP model, is then executed using the Joint Trajectory
Action Server available in the Baxter ROS SDK.

Our solution, as explained previously, has two modes of
functioning: using only predictable trajectories or using only
legible trajectories. This difference is important to evaluate
whether a significant difference exists in the human per-
ception of the robot’s objective or not depending on the
type of movement performed. It also allows us to investi-
gate whether the results of Dragan et al (2015) also stand
in settings involving collaborative manipulation tasks with
multiple people.

The use of pure legible and predictable motions, as shown
in (Dragan et al. 2015), works really well in conveying in-
tentions during a collaborative task between one person and
one robot. However using only one of these types of mo-
tions has some drawbacks: for example when using only leg-
ible motions and there is no ambiguity regarding the robot’s
objective, legible motions do not bring significant improve-
ments over predictable trajectories. However it does bring
extra expense of energy and takes more time performing the
task than while using predictable trajectories. Predictable
motions, as shown by Dragan et al., lack the explicitness
that legible motions have when addressing cases of ambigu-
ity between possible objectives for the robot. Due to those
drawbacks we devised an approach that tries to combine the
advantages of both trajectories, while reducing their draw-
backs.

In this approach we use both predictable and legible tra-
jectories during the collaborative task and it is the system’s
responsibility to decide if it should perform a predictable
trajectory or a legible trajectory. In order for it to do that,
we devised a set of rules that, although somewhat specific
to our task, can easily be generalized to other collaborative
tasks where the robot must manipulate an object. Based on
the results from (Dragan et al. 2015) and observations of
human-human interaction, we designed the following set of
rules:

o if the selected objective is closely surrounded by two or
more other of other objectives, a more direct movement
(predictable movement) is preferable than a more open
movement (legible movement);

o if the selected objective only has objects on one side then
a movement that approaches the side the objective from
the side with no objects is better than a more direct one, a
legible movement is preferred to a predictable one;

e if there is only one remaining objective or if there is no
ambiguity regarding possible objectives then a predictable
movement is preferred to legible movements.
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Experimental Setup

In this work we intend to answer the question “In a mul-
tiple user collaborative manipulation task, what is the best
type of trajectory to perform, in order to minimize confu-
sion between users regarding the robot’s target?” and as
such we created a system that will use the notions of legibil-
ity and predictability combined with a learning framework
that allows a robot to better adapt to possible changes in the
workspace configuration.

In order to test our system, we use the task of pouring
water into the cup of three people. This task allows a com-
parison of the performance of different motion patterns (pre-
dictable, legible or a combination) in multi-user collabora-
tive tasks.

Our experiment thus reproduces a cafeteria-like scenario,
in which people approach a bartender (the robot) and wait
to be served before moving away. Like so, the participants
will be instructed to approach the robot at the start of the
experience as if they were to ask it to fill their cups and the
robot will sequentially fill the cups. The experience will be
repeated three times for each group of three participants, one
for each of the approaches used to generate movement: pre-
dictable, legible and combination of both, with the order in
which the robot starts filling the cups randomized so as not
to create a pattern and deviate the results.

At the beginning of each interaction the robot will greet
them, then it will wait until it recognizes the cups and fills
them and when all three cups are filled, the robot will say
goodbye. At the end of each interaction the participants will
be asked to fill in a questionnaire, with which we ascertain
what the participants felt about the robot regarding the in-
telligence of the robot and the likability and also if they
noted any difference between the movements performed by
the robot. Besides the questionnaires, the entire experience
will be recorded and analyzed afterwards in order to dis-
cover how long each took participant, under each condition,
to understand who the robot was directing its action towards,
and if there were any that misunderstood the robot’s objec-
tive.

Final Remarks

As stated in the beginning of this paper, this is an ongoing
work and as such we do not have any results at the time.

Nevertheless, we are confident that with this work we will
create a system that allows for better collaboration in tasks
that require manipulation of objects in close proximity with
robots, by making the robot’s actions more understandable
and its goals more explicit. Mostly, we expect that our com-
bination of predictable with legible trajectories will reduce
some of the shortcomings that each type of trajectories has
by itself and that the use of learning instead of planning will
allow the robot to better adapt to fast changes that occur dur-
ing the task execution.
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