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Abstract— This paper presents a study on collaborative
manipulation between an autonomous robot and multiple users.
We investigate how different motion types impact people’s
ability to understand the robot’s goals in a multi-user scenario.
We propose an approach based on Collaborative Probabilis-
tic Movement Primitives to generate the robot’s movements,
exploiting predictability and legibility of movement to express
intentions through motion. We compare the impact on the in-
teraction of using only either predictable or legible movements,
and propose a third approach —hybrid motion—that selects,
in each situation, whether to execute a predictable motion
or a legible motion, depending on what the robot perceives
as more efficient for the multi-user collaboration effort. To
test the impact of the three motion types in the context of
a collaborative task, we run a user study using a Baxter robot
that autonomously serves cups of water to three users upon
request. Our results show that, in the particular case where all
users simultaneously request water, the hybrid motion performs
better than the other two.

I. INTRODUCTION

As robots become more widely used in different aspects
of our daily life, they should be able to interact successfully
with the multiple human users with which they share their
environment. In particular, social interactions require that the
humans be able to interpret the robot’s intentions, so that
the actions of the latter do not cause confusion, surprise
or even fear upon the humans. Such ability to interpret the
robot’s intentions is critical in situations where humans and
robots co-operate, so that the humans can quickly adjust to
the robot’s actions, thus yielding more efficient interactions.

In this paper we investigate how different motion types
impact the transmission of intent during a collaborative
manipulation task between an autonomous robot and multiple
users. Specifically, we study the effect of different motion
types in both the fluency of the collaboration and in the
efficiency of the intention transmission by the robot.

Our scenario involves an autonomous robot serving as
a “bartender”, pouring a cup of water to one of several
customers. If the robot performs an unexpected motion,
human users may become confused regarding whom the
robot is trying to serve, which may eventually cause the
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wrong person to be served. On the other hand, if the intention
of the robot is clearly perceivable, the chances of confusion
decrease and the efficiency of the task improves.

In our approach, we use Collaborative Probabilistic Move-
ment Primitives [1] to generate new movements for the
robot, and rely on established notions of legibility and
predictability [2] to express intention through motion. We
contribute a novel approach that combines both legibility and
predictability, depending on the situation, and thus leverages
the advantages of both.

II. RELATED WORK

Human-robot collaboration has been extensively investi-
gated in the HRI community, both in terms of robot motion
[3]–[6] and in terms of the interaction and communication
of intentions [7]–[10].

In terms of robot motion for collaboration, existing works
explore how a robot can safely move close to people during
collaborative tasks [4], [11]. Such approaches use informa-
tion about the movement of the humans and the layout of
the environment to predict how the users will move. The
robot then plans its own motion accordingly. Other works
explore alternatives to the use of planning to determine the
best movement to perform in a collaboration task [3], [5],
[12], [13]. The robot learns from demonstration a set of
movement primitives that are then generalized (modulated)
to new targets. The learned movements primitives can be
compactly represented as a dynamical system [5] or using
a probabilistic representation [3]. In our work, we adopt
a probabilistic representation in the form of Probabilistic
Movement Primitives (ProMP) [14].

In terms of interaction for collaboration, several works
have investigated the impact of communication during task
execution, both implicit and explicit [10], [15], [16]. These
studies show that different forms of communication (e.g.,
through body movement, touch, gaze, etc) play an important
role during collaboration, because people tend to look for
cues allowing them to infer the movements and intentions of
their partners and adapt accordingly.

Driven by such conclusions, several mechanisms have
been deployed on robots to facilitate interaction. In one
approach, the robot identifies cues from humans to anticipate
their actions and respond accordingly [17]. In another work,
the robot movements were designed to be anticipatory, thus
allowing humans more time to respond to the robot [8].

Particularly relevant to our work are the works of Dragan
et al [2], [6]. These works investigate the use of both anima-
tion principles and anticipatory motion to create movements
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that allow humans to quickly discern the robot’s intentions.
Dragan formalizes the notions of predictability and legibility
in robot movement, and investigates how both types of move-
ment (predictable and legible) impact collaboration between
humans and robots. Their studies show that predictability and
legibility can be used to improve a user’s understanding of
the robot’s intentions [7], even in scenarios where the robot’s
objective is not easily identified. In this work we explore
those same notions of legibility and predictability but in
scenarios involving multiple human users, which increase the
collaboration complexity given the fact that the collaboration
is multi-sided making the motion decision more complex.

III. SCENARIO AND APPROACH

In our scenario, a Baxter robot interacts simultaneously
with multiple users, successively pouring water in the cups
held by the users (see Fig. 1). As the human users tend to
approach the bartender when they believe that they will be
served next, interaction is more effective if the motion of the
robot can be easily interpreted by the different users.

In order to address this scenario, we developed an inter-
action control system for the Baxter that comprises three
modules: a vision module that identifies the position of
each cup using a Kinect camera; a decision module that
selects which cup to fill next and generates the corresponding
movement; and a social interaction module, responsible for
making the interaction feel more natural by using facial
expressions and/or speech.

The decision module uses Probabilistic Movement Primi-
tives to generate the robot’s serving motion. Serving motions
are learned from demonstration and designed to take into
account principles of predictability and legibility. In particu-
lar, at each moment the decision module decides whether to
generate a predictable movement or a legible movement.

A. Predictability and Legibility

As described by Dragan et el. [2], predictability and
legibility describe two distinct properties of a movement.
Predictability is the property of a motion to match the
movement that a person would expect if they knew the
objective of the motion. Legibility is the property of a
movement that allows a human partner to quickly infer the
objective of the motion. While a predictable motion is more
efficient, a legible motion allows another party to quickly
understand its goal.

B. Movement Learning

We use an instance of Probabilistic Motion Primitives
especially designed for collaborative interactions [1]. Collab-
orative Probabilistic Movement Primitives (CoPMP) build a
probabilistic model of the intended motion correlating both
the degrees of freedom of the robot and additional degrees
of freedom foreign to the robot (for example, of a human
user). This probabilistic model is typically learned from
demonstration, and provides a compact representation for
a set of (similar) demonstrated trajectories in both spacial
and temporal terms. The consideration of the DoF of the

human user allows the robot to naturally modulate its motion
depending on the pose of the human user. Additionally,
CoPMP are also very sample efficient [1], allowing the robot
to capture a motion from a couple of demonstrations.

In this work, we use CoPMPs to model, separately, pre-
dictable and legible movements. At run time, one type of
movement is selected and the trajectory generated from the
corresponding CoPMP. The trajectories used to build the
CoPMP were demonstrated using kinesthetic teaching and
designed from the principles in [2]. Predictable trajectories
are more direct and “unsurprising”; legible motions seek to
explicitly communicate the movement’s target, generally by
performing wider movements that steer away from the other
possible targets as much as possible. The CoPMPs obtained
for both motion types were then validated by human users.

C. System Architecture

The overall system is built over ROS. The vision module
uses the data sent from a Kinect v2 camera to determine the
3D position of the target cups. In particular, the color image
is segmented to determine the position of the different cups in
the image and the depth image is then used to determine the
centers of mass for each cup in real world 3D coordinates.

The movement decision module uses the data from the
vision module to decide which cup to serve next. The
decision is based on the distance of the different cups: the
system selects the closest reachable cup that has not been
served yet. After the cup is selected, the serving motion is
generated conditioning the CoPMP model to finish slightly
above the computed center of mass of the selected cup. The
movement is then executed using the joint trajectory action
server on Baxter. The decision module also communicates
with the social interaction module whenever some specific
interaction with the user is necessary for the task to complete.

Finally, the social interaction module is responsible for
displaying facial expressions that relate to the task stage. For
example, the robot displays a happy face after performing a
successful movement. It also follows the movement of its
own arm during the serving motion, much like humans do
when pouring a drink. Additionally, the robot also interacts
through spoken utterances to greet the users, explain the task,
or ask the user to reposition the cup when out of reach.

D. Hybrid Movement

In this work, we investigate for the first time how legibility
and predictability impact the interaction between a robot and
multiple users. In particular, in the context of multi-user
interaction, the robot should be able to select, in runtime,
whether a legible motion or predictable motion is more
adequate, depending on the current context of task. We thus
developed an approach that, given a target cup and the task
context (e.g., the state of the other cups and the position
of the different users), decides whether to perform a legible
or a predictable motion. The selection is done by checking
whether a legible movement towards the target cup would
be more expressive than executing a predictable movement.
This verification relies on the following criteria:
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• When the intended target is closely surrounded by other
possible targets, a more direct (predictable) movement
is preferable to a wider (legible) movement;

• When the intended target has other possible targets
on one side alone, a legible movement from the side
with no other targets is preferred to a more predictable
movement;

• When the target has other possible targets nearby, on
the side that the robot will approach—e.g., when the
robot is reaching the leftmost cup with the right arm
and there are other cups on the right of the objective
cup—a predictable movement is preferred to a legible
movement;

• Finally, if there is only one target remaining or there
is no ambiguity regarding intended target, a predictable
movement is preferred.

To determine when a target is sufficiently close to affect the
expressiveness of a legible movement, we tested different
configurations and found that, for distances smaller than
50cm between possible targets, people find legible move-
ments to be more confusing than predictable movements. We
used this value as the minimal distance that a cup should be
from other cups on the side of the executing robot arm for
the robot to execute a legible motion. We also concluded that
when the distance between targets is close to the diameter
of a cup, a predictable motion is preferred to a legible one.

IV. USER STUDY

We conducted a user experiment using the system de-
scribed above, where a Baxter robot interacted simultane-
ously with three users, successively serving water to the
different users. A total of 33 participants, recruited from the
Lisbon area, participated in the study, out of which 22 were
male and 11 were female. Their ages ranged from 19 to 33
years old, with a mean age of 23 years old. The participants
were randomly matched in groups of three, according to the
availability of each participant.

A. Experimental Design

The task was designed to test how the users’ perception of
robot motion is affected when they have to collaborate with
a robot to achieve a common goal (having the respective cup
filled with water) while other people try to achieve a possibly
concurrent goal. Ideally, the users should collaborate both
with the robot and one another, so they are served as soon
as possible and without anyone being served out of order.

Figure 1 illustrates the setup during an experiment. Each
group of three participants interacted with the robot three
times, one for each motion type (predictable, legible and hy-
brid). The order of the different motion types was randomly
selected, to prevent influence across groups of users.

Each interaction consisted of three movements of the
robot, one for each cup. For the purpose of the study, and to
prevent a serving pattern that the participants could exploit,
the robot randomly selected the next cup among those that
were reachable and not yet served. Such random selection
also forced the participants to be focused on the motion

Fig. 1: Scenario layout. The robot on the right serves each of
the users on the left. The cups are filled by no particular order
and the participants should respond to the robot’s movement.

of the robot, giving it a leading role in the interaction and
emphasizing the importance of the robot’s movement. The
participants were asked to individually figure out who the
robot was serving next and facilitate the task, either by
moving their cup slightly away (if they thought they were not
being served) or by complying with the robot’s movement (if
they thought they were being served). After each interaction
the participants answered a questionnaire to evaluate the most
recent interaction.

In order for the participants to be familiarized with the
robot’s motion and its motion and reduce the novelty effect,
each group performed a training interaction with the robot,
before starting the evaluation process. In this training interac-
tion the robot always performs predictable movements, since
they are more direct and expectable.

B. Hypotheses

In our study, we investigate the following hypotheses:

• H1 The type of movement impacts the collaboration.
• H2 Participants prefer hybrid motions to legible mo-

tions and legible motions to predictable motions.
• H3 Hybrid motions are seen as more legible and

predictable and result in more efficient task execution.
• H4 Hybrid motions will not be perceived as more

confusing than the other two.
• H5 The type of movement will not impact the per-

ceived intelligence of the robot.

C. Metrics

To evaluate the collaboration between the robot and the
humans we used both objective and subjective measures.

In terms of objective measures we analyzed the reaction
time and number of errors for each participant across all
conditions. The reaction time was measured for each partic-
ipant, in each condition, in two ways: the time it took, from
the beginning of the robot’s movement until the participant
understood the robot was moving to him, when the robot was
moving to that participant; the average time it took, from
the beginning of the robot’s movement until the participant
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Fig. 2: Average time that each participant took to understand
that the robot was serving him/her, organized per movement
type.

understood the movement was not for him, when the robot
was moving to another participant.

Regarding the number of errors, we considered an error
when a participant was wrongly served. In these cases both
the participant supposed to have the cup filled and the one
that got the cup filled were considered as having failed and
their reaction time was considered 8.5 seconds (the time it
took for the robot to complete a full movement).

The subjective measures intended to evaluate the perceived
collaboration and fluency of the task, the perceived legibility
and predictability of the movements and the perceived ani-
macy and intelligence of the robot.1 All subjective measures
were taken once for each participant for each condition.

Finally, after the three interactions, the participants an-
swered four forced-choice questions about which of the
movements was their favorite, less confusing, easier to work
with and with which they were faster with.

V. ANALYSIS OF THE RESULTS

A. Objective Measures

The analysis in terms of the objective measures considered
the following occurrences for each condition: reaction time
to understand the robot is moving towards the participant;
reaction time to understand the robot is moving to another
one of the participants; number of times people wrongly
understood the robot’s movement.

Figure 2 presents the average time it took each participant
to understand that the robot was serving him/her, for the three
types of motion. The data does not follow a normal distribu-
tion because of two occurrences: participants wrongly under-
stood that the robot was moving towards another participant;
and participants served last already knew they were next and
immediately started collaborating with the robot. Given the
non-normality of the data, we performed the Friedman Test

1Perceived collaboration and fluency were evaluated using the Hoffman’s
questionnaire [18]. Animacy and perceived intelligence were evaluated using
the Godspeed questionnaire [19].
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Fig. 3: Average time that each participant took to understand
that the robot was not serving him/her, organized per move-
ment type.

concluded that there is a statistically significant difference in
the time it took depending on the type of movement executed,
with χ2(2) = 11.546, p = 0.003, which is in line with H1.

Post hoc analysis with a Wilcoxon signed-rank tests was
conducted with a Bonferroni correction applied, resulting
in a significance level set at p < 0.017. Median (IQR)
reaction time until a participant understands that the robot
is moving towards him/her for the predictable, legible and
hybrid motions was 2.63s (1.77s to 5.63s), 3.00s (1.63s to
4.79s), and 1.70s (1.00s to 2.85s), respectively. There were
no significant differences between predictable and legible
motions (Z = −0.78, p = 0.946). However, between hybrid
and predictable and between hybrid and legible motions,
hybrid motions’ reaction times were significantly lower than
predictable motions’ reaction time (Z = −2.695, p = 0.006)
and legible motion’s reaction time (Z = −3.940, p < 0.001).
These results are in line with H3.

Figure 3 presents the average time it took each participant
to understand that the robot was serving another participant,
for the different types of motion. Once again, the data is not
normally distributed. We performed the Friedman test and
found a significant difference between the different motion
types, with χ2(2) = 16.464, p < 0.001.

We again administered a post-hoc test, the Wilcoxon
signed-rank tests with a Bonferroni correction, resulting
in a significance level set at p < 0.017. With this test
we concluded that between predictable and legible motions
there is no significant difference (Z = −1.778, p = 0.77),
but between predictable motions and hybrid motions (Z =
−4.076, p < 0.001) and legible motions and hybrid motions
(Z = −2.790, p = 0.004) there is a difference. By looking at
the median (IQR) the reaction times for predictable, legible
and hybrid motions were 2,66s (1,54s to 4,44s), 1,59s (1,00s
to 3,08s) and 1,11s (1,00s to 2,08s), respectively. Such
conclusion again goes in line with H3.

Regarding the number of wrongly perceived movements,
• Out of the 33 predictable movements, 6 (18.182%)

caused confusion on two people about who the robot

2796



was directing the movement;
• Out of the 33 legible movements, 1 (3.03%) caused

confusion about the robot’s target;
• Out of the 33 hybrid movements, none caused confused

regarding the robot’s target.
Although there was no statistical difference, our results
suggest that predictable motions are more confusing than the
others, possibly because they are more direct and lead the
participants to react more impulsively to the robot’s motion.

B. Subjective Measures

The subjective measures were analyzed in terms of per-
ceived fluency, perceived robot contribution, perceived trust
in the robot, perceived safety and perceived robot capabilities
to fulfill the task. Of these measures, only the perceived robot
contribution had a non-normal distribution of the data. A
repeated measures One-Way ANOVA was performed over
the combined scores of each item in the fluency, trust, safety
and capability metrics and a Friedman test over the combined
scores of each item in the robot contribution metric.

The repeated measures One-way Anova tests showed that
there were only marginally significant differences in the
perceived fluency (F (2, 64) = 3.143, p = 0.050). The robot
contribution metric was analyzed using a Friedman test,
which returned that there are no significant differences in
terms of the robot contribution perceived by each participant
in the different motion types.

These results in part contradict our H1 hypothesis, because
apart from the perceived fluency, the other measures to
evaluate the perceived collaboration show that the partici-
pants did not notice any differences between robot motion
type. Nevertheless, the participants rated the motion types
consistently positive, which indicates that they perceived the
collaboration between the humans and the robot correct and
positive, across every motion type. Another aspect that is
interesting is that the hybrid motion was, in average, rated
as the most collaborative motion and the predictable motion
was rated as the least collaborative one.

The analysis of the results for perceived predictability
and perceived legibility was performed using the Friedman
test, since both scales have a non-normal distribution. The
results for the predictability measure show that there was
no significant difference in perceived predictability of the
different motions (χ2(2) = 3.429, p = 0.180). In terms of
the perceived legibility, the Friedman test shows a significant
difference between different motions (χ2(2) = 7.431, p =
0.024). A post-hoc analysis with Wilcoxon signed-rank tests
was conducted with a Bonferroni correction applied, result-
ing in a significance level set at p < 0.017 and resulted in a
significant difference between perceived legibility in hybrid
and predictable motions (Z = −3.075, p = 0.001) and
hybrid and legible motions (Z = −2.446, p = 0.013). There-
fore, we can conclude that the hybrid motion was perceived
as more legible than both the legible and the predictable
motions, which is aligned with our H3 hypothesis.

The animacy and perceived intelligence metrics were
analyzed using a repeated measures One-Way ANOVA. Both
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Fig. 4: Results for the forced choice questions.

tests returned that there were no significant differences
among the motion types.The result for the perceived intelli-
gence dimension goes in line with our H5 hypothesis.

C. Forced-choice Questions

The results of the forced-choice questions are summarized
in Figure 4. The analysis of the forced-choice questions was
done by analyzing the frequency that each motion type was
selected in each one of the questions. Since we are dealing
with nominal frequencies, we performed the Chi-Square
Goodness of Fit and obtained that there are no significant
differences between the motion types regarding which is
preferred or which is less confusing.

In particular, in terms of which is the less confusing
motion, the frequencies were very similar with 9 people
saying that predictable motion was less confusing, 13 saying
legible and 11 saying hybrid. This result is interesting, even
more when contrasting with number of wrong inferences
of the robot’s objective that were presented previously: as
shown previously 18% of the predictable movements caused
doubts on the participants and the wrong one was served
and in 3% of the legible movements the same occurred.
However, the fact that hybrid and legible motions had a
similar frequency of choice, as the least confusing movement,
goes in line with H4.

VI. DISCUSSION AND FINAL REMARKS

In this paper we evaluate the impact of different motion
types in a collaboration task between a robot and multi-
ple people. Following the work of Dragan et el. [2], we
investigated the use of predictable and legible motions in
the interaction with multiple users, and proposed a third
approach that seeks to capture the advantages of both the
other two while mitigating their drawbacks. We tested the
impact of the different types of movement in the interaction
with multiple users through a user study with human users.

While some of our results agree with previous findings
reporting in the human-robot collaboration literature, other
results provide novel insights on how different types of
movement can improve collaborative manipulation tasks.
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The first result that we find important is that no significant
difference, in terms of time that took between the robot
starting to move and people understood the robot’s objective,
existed between predictable and legible motions. This is
interesting because prior work concluded that legible motions
contributed for less reaction times and total task times.

This difference in results can lead us to conclude that
although legible motions are more expressive, the workspace
configuration and the existence of other users play important
roles on people’s interpretation of the robot’s objective based
on its movements.

Another result that is important is that allowing the robot
the freedom to choose between executing a predictable and
a legible motion, depending on the workspace configuration,
leads to better collaborations, both in terms of the time it
takes for the participants to understand the robot’s intentions
and in terms of them to ”read” the movement and adapt
better to it.

The fact that both the perceived capability and intelligence
of the robot did not show a significant difference is interest-
ing, since it proves that even if the robot does a less natural
or less rational movement - like executing a more wide
movement - as long as it behaves as supposed (it fulfills its
collaboration role) people think he is capable and intelligent.

Overall, with this work we showed that when there are
multiple people engaging the robot simultaneously, and so
each person does not focus his attention solely on the
robot, executing only predictable or legible motions does not
necessarily improve the collaboration. However, allowing the
robot to choose between executing a more direct or a more
readable movement, depending on the configuration of the
objectives in the workspace, leads to less confusion among
the humans involved in the task and reduces the time people
take to understand if the robot is moving for them or not.
All of this without negatively impacting the perceptions of
collaboration and the task’s fluency.

In the future, we plan to improve the hybrid approach by
exploring ways of the system learn to recognize situations
were a predictable motion is better than a legible motion and
vice-versa and to allow it to generalize such conclusions to
situations not predicted. We are also interested in studying
the influence of using other communication means besides
the robot movement, in how people perceive the robot’s
objective. Finally, we think that it would be interesting to
see if the same results, regarding the hybrid approach, would
hold if more complex scenarios, where people would not be
just waiting for the robot to move but also were engaged in
other activities.
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