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Abstract— In this paper, we propose a reinforcement learning
approach to address multi-robot cooperative navigation tasks
in infinite settings. We propose an algorithm to simultaneously
address the problems of learning and coordination in multi-
robot problems. The proposed algorithm extends those existing
in the literature, allowing to address simultaneous learning and
coordination in problems with an infinite state-space. We also
present the results obtained in several test scenarios featuring
multi-robot navigation situations with partial observability.

I. INTRODUCTION

Autonomous navigation of mobile robots has been con-
sidered a key subject of investigation from the early days of
robotic research. In fact, the ability of a robot to accomplish
a certain task in a given environment depends, quite often, on
the robotŠs ability to navigate in its environment. And, with
the appearance of new and demanding robotic applications,
there is a natural interest in developing more complex robotic
systems, consisting of multiple independent robots. In such
multi-robot applications, it is desirable that a each robot be
able not only to navigate its environment but also to adapt

and coordinate with the other robots. Classical reinforcement
learning (RL) provides an appealing approach to address
such adaptability issues [1] and the combination of RL with
game theoretic ideas [2], [3] has led to interesting approaches
that also address coordination in multi-agent problems [4]–
[6].

The general purpose of RL is to find a “good” mapping
that assigns “perceptions” to “actions” [1]. In theory, the
formalism and methods of RL can be applied to address
any optimal control task, yielding optimal solutions while
requiring very little a priori information on the system
itself. However, in practice, RL methods suffer from the
curse of dimensionality [7] and exhibit limited applicability
in complex control problems. Unfortunately, many actual
control problems are inherently infinite, described in terms
of continuous state variables. And, in the particular case of
robotic applications, there is often some degree of uncertainty
regarding the state of a system (due to noisy sensors, etc.),
requiring a robot to decide upon a (real-valued) belief that
describes some probability distribution. The attractiveness
of the RL framework and this abundance of interesting but
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complex control problems emphasize the need to develop
more powerful RL methods.

In this paper we address the problem of simultaneous
learning and coordination in multi-agent problems with in-
finite state-spaces. We combine an approximate version of
Q-learning [8] with an approximate coordination mechanism
dubbed approximate biased adaptive play (ABAP) [9]. The
main contribution of the paper is the combination of both
algorithms to yield a unified algorithms that simultaneously
learns and coordinates in infinite multi-agent settings. Our
approach differs from other methods in the literature [6],
[10] in several aspects: we assume no communication among
the robots and do not require all robots to follow the
same decision/coordination algorithm. This is an important
advantage: in the presence of a heterogeneous group of
robots , our algorithm is still able coordinate to the best
decision-rule possible if, for some reason, the other robots act
sub-optimally. Finally, we also remark that although in this
paper we focus on multi-robot navigation tasks, we remark
that the approach described can easily be extended to other
application scenarios.

II. MARKOV MODELS FOR NAVIGATION

In this section we review the several models to be used
throughout the paper.

A. Markov chains and Markov decision processes

A homogeneous Markov chain is a discrete-time stochastic
process defined by a pair (X ,P), where X ⊂ Rp is the state-
space and P(x, U) represents the time-independent transition
probability from state x to set U ⊂ X . Given a measurable
set U ⊂ X , the first return time to U is defined as

τU = min
t∈T

{Xt ∈ U, t ≥ 1} .

A Markov chain is ψ-irreducible if

ψ(U) > 0 ⇒ P [τU <∞ | X0 = x] > 0 (1)

for any x ∈ X and ψ is maximal in the sense that if µ is
some other measure verifying (1), then µ≪ ψ. If ηU is the
number of visits to a measurable set U ⊂ X in an infinite
trajectory of the chain, the set U is said to be Harris recurrent

if P [ηU = ∞ | X0 = x] = 1 for all x ∈ X . A ψ-irreducible
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Markov chain is Harris recurrent if any measurable set U ⊂
X , ψ(U) > 0 is Harris recurrent [11].

A Markov decision problem (MDP) is a tuple
(X,A,P, r, γ) where X represents the state-space, A
represents the action (or control) space, Pa(x, U) denotes
the action-dependent transition probability from a state x

to a set U ⊂ X . The purpose of the decision-maker is to
determine the A-valued control process {At} maximizing

V ({At} , x) = E

[

∞
∑

t=0

γtr(Xt, At, Xt+1) | X0 = x

]

, (2)

where 0 ≤ γ < 1 is a discount-factor and r(x, a, y) is a
bounded numerical “reward” received for moving from state
x ∈ X to state y ∈ X after taking action a ∈ A. The optimal

value function is defined as

V ∗(x) = max
{At}

E

[

∞
∑

k=0

γtr(Xt, At, Xt+1) | X0 = x

]

(3)

and verifies Bellman optimality equation [12]. The optimal

Q-function is defined for each state-action pair as

Q∗(x, a) =

∫

X

[

r(x, a, y) + γV ∗(y)
]

Pa(x, dy). (4)

Finally, the optimal decision rule can be obtained from Q∗

as
π∗(x) = arg max

a∈A
Q∗(x, a).

The optimal control process is then given by At = π∗(Xt)
and π∗ is the optimal policy for the MDP (X,A,P, r, γ).

B. Game theoretic approach to multi-agent systems

Markov games [13] are generalizations of MDPs to mul-
tiple decision-makers. Therefore, a Markov game is a tuple
(

N,X , (Ak),P, (rk), γ
)

, where N is the number of agents,
X is the state-space, Ak is the set of individual actions for
agent k and A = ×N

k=1A
k is the set of all joint actions; P is

the controlled transition kernel and rk is the reward function
for agent k.

An individual policy for agent k is a state and time-

dependent probability distribution πk
t over the set Ak. It

defines the probability of agent k playing each action ak ∈
Ak at each time instant and in each state. A joint policy is
a vector πt = (π1

t , . . . , π
N
t ) of individual joint policies and

πt(x, a) represents the probability of the joint action a being
played in state x at time t when all agents follow the policy
πt. We write V πt(x) instead of V ({At} , x) whenever the
control sequence {At} is generated by the joint policy πt,
and refer to V πt as being the value function associated with
policy πt.

In this paper, we are interested in team Markov games.
In team Markov games, all agents share the same reward
function, i.e., r1 = . . . = rN and, as such, all have a
common goal: to maximize the (common) total expected
reward. This total expected reward is defined as in (2), where
now r(x, a, y) is the reward received by all agents for taking
the joint action a in state x and moving to state y. It is

immediate to define the optimal value function V ∗ for a team
Markov game as in (3) (where now At stands for the joint
action at time t) and the optimal Q-function, Q∗, as in (4).

If the definition of V ∗ and the existence of an optimal
joint control policy arise immediately from the corresponding
results for MDPs, the fact that the decision process in team
Markov games is distributed implies that coordination must
be addressed explicitly [4]. On the other hand, we note
that the function Q∗ defines, at each state x ∈ X , a fully
cooperative matrix game Γx =

(

N, (Ak), Q∗(x, ·)
)

, that we
refer as a stage-game. If the agents play an optimal Nash
equilibrium in each stage-game Γx, the resulting policy is
optimal for the team Markov game [14]. As in the single-
agent situation, the optimal policy can be determined from
Q∗ and, in the next section, we discuss how Q∗ can be
estimated in general infinite problems.

III. LEARNING IN INFINITE PROBLEMS

This section addresses two fundamental issues arising in
the class of problems considered in this paper. As seen in the
previous section, the optimal control process can be obtained
from Q∗ both in the single and in the multi-agent situations.
In this section we discuss how Q∗ can be determined. A
second distinct problem is related with the fact that the
optimal control process needs not to be unique. In the multi-
agent setting this leads to a problem known as coordination

problem [4], the second issue discussed in this section.

A. Approximate Q-learning

We start by remarking that the optimal Q-function verifies
the following recursive relation for every state-action pair

Q∗(x, a) =

∫

X

[

r(x, a, y) + γmax
b∈A

Q∗(y, b)
]

Pa(x, y).

The original Q-learning algorithm [15] implements a
stochastic approximation of the recursion above to determine
the optimal Q-values. The update-rule for Q-learning is

Qt+1(x, a) = Qt(x, a) + αt∆t, (5)

where ∆t is the temporal difference

∆t = R(x, a) + γmax
b∈A

Qt(X(x, a), b) −Q(x, a)

and X(x, a) and R(x, a) are X -valued and R-valued random
variables obtained according to Pa and r. The sequence
{αt} is the step-size sequence verifying

∑

t αt = ∞ and
∑

t α
2
t < ∞. Notice that R(x, a) and X(x, a) can be ob-

tained using some simulation/sampling device, not requiring
the knowledge of either P or r. However, if X is an infinite
set, it is not possible to straightforwardly apply (5), since
it explicitly updates the Q-value for each individual state-
action pair and there are infinitely many such pairs.

To circumvent such difficulty, we consider a linear fam-
ily of functions Q = {Qθ} parameterized by a finite-
dimensional parameter vector θ ∈ RM . For a fixed set of
M bounded, linearly independent functions φi ∈ Q, any
function in Q can be written as

Qθ(x, a) =
∑

i

φi(x, a)θi = φ⊤(x, a)θ,
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where ⊤ represents the transpose operator. We want to de-
termine the point θ∗ in parameter space such that Qθ∗ is the
best approximation of Q∗ in Q, in some sense. By defining
a suitable recursion for θ, we reduce the determination of
the infinite-dimensional function Q∗ to the determination of
a finite-dimensional vector θ∗. In what follows, we assume
the functions φi to verify

∑

i |φi(x, a)| ≤ 1 and ‖φi‖∞ = 1.
Notice that this immediately implies the functions to be
bounded and linearly independent.

In the original Q-learning algorithm, the temporal differ-
ence ∆t works as a 1-step “estimation error” with respect to
(w.r.t.) and the update rule “moves” the estimates Qt closer to
Q∗, minimizing the expected value of ∆t. Applying the same
underlying idea, we resort to a smooth Dirac aproximation
gε

1 to obtain the following update rule, that we henceforth
refer as the approximate Q-learning,

θt+1(i) = θt(i) + αtgε(xi, ai, xt, at)∆t, (6)

where the temporal difference ∆t is

∆t = r(xt, at, xt+1) + γmax
b∈A

φ⊤(xt+1, b)θ − φ⊤(xt, at)θ.

In the previous update, {xt} and {at} are state and action
trajectories sampled from the Markov chain induced by some
fixed learning policy π. The pairs (xi, ai), i = 1, . . . ,M are
such that φi(xi, ai) = 1.

We are now in position to introduce our first result, a more
detailed version of which can be found in [8]. Let π be a fixed
learning policy and (X ,Pπ) the corresponding Markov chain
with invariant probability measure µX , absolutely continuous
w.r.t. the Lebesgue measure µLeb, with a Radon-Nikodym
derivative bounded away from zero [16].

Theorem 1: Let (X,A,P, r, γ) be a Markov decision pro-
cess with compact state-space X ⊂ R

p and assume the
Markov chain (X ,Pπ) to be geometrically ergodic. Suppose
that π(x, a) > 0 for all a ∈ A and µX -almost all x ∈ X . Let
φi, i = 1, . . . ,M be a set of bounded, linearly independent
functions defined on X × A and taking values in R. In
particular, admit that

∑

i |φi(x, a)| ≤ 1 for all pairs (x, a)
and that ‖φi‖∞ = 1. Then, for ε sufficiently small, the
algorithm in 6 converges with probability 1 (w.p.1) as long
as the step-size sequence αt verifies

∑

t

αt = ∞
∑

t

α2
t <∞.

Proof: See [8].
It is important to refer at this point that the quality of

the obtained approximation greatly depends on the choice of
basis functions, as discussed in [8]. The adequate choice of
basis functions is a topic of intense current research.

1A smooth Dirac approximation is such that
∫

X×A

gε(x, a, y, u)µ(dy, du) = 1

and

lim
ε→0

∫

X×A

gε(x, a, y, u)f(y, u)µ(dy, du) = f(x, a),

where µ is some probability measure on X ×A.

B. Learning in multi-agent settings

As stated above, learning in multi-agent scenarios must
consider two distinct problems: learning the game and learn-

ing to coordinate. Learning the game deals with determining
Q∗. Once this function is known, the agents are able to
determine the optimal policies and, if necessary, deal with
the problem of coordination (i.e., learn to coordinate).

We start with the problem of learning the game. The
only difference between applying approximate Q-learning to
MDPs and to team Markov games lies on the fact that, in the
latter, the action sequence {At} is generated in a distributed
fashion by the N agents in the game. This does not affect in
any way the convergence of the algorithm and the sequence
θt will converge w.p.1 to the same limit θ∗ as it would in
the single agent situation, for an adequate learning policy.

We now discuss the problem of coordination. Consider the
scenario depicted in Fig. 1.

Robot 1 Robot 2

Solution 1 Solution 2

Fig. 1. Example with 2 robots in a 2 × 2 grid-world.

Two robots (1 and 2) must move from the corresponding
cell in the bottom row to the opposite cell in the top row,
without colliding with each other (i.e., lying in the same cell).
There are several optimal ways of doing this, two of which
are depicted in Fig. 1. Suppose now that Robot 1 opts by
choosing Solution 2 and Robot 2 opts by choosing Solution 1
(we assume no communication between the robots). This
means that they will collide in the middle cell in the bottom
row, which is an undesirable behavior.

This problem is known as a coordination problem [4].
Even if the robots know the model and the solutions, it is still
necessary to devise some specific mechanism to ensure that,
in the presence of multiple solutions, all robots commit to
the same. This mechanism can rely on implicit assumptions
on the way robots choose their actions [17], communication
[18], social conventions [19] or coordination graphs [6].

In this paper we are interested in coordination emerging

from the interaction among the robots, rather than “in-
trinsically implanted”. We also consider that no explicit

communication takes place. As such, we will make use of
use biased adaptive play (BAP) [20], since it can easily be
combined with Q-learning [21]. In order to address problems
with infinite state-spaces, we will introduce a variation of
BAP that can handle such problems.

The basic working of BAP is as follows. At each time
step, each agent samples the history of past plays (at the
corresponding stage-game) and uses these samples estimate
the average policies of the other agents in that game (by
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computing a simple average). Then, using standard game-
theoretic reasoning, it is able to choose a best response to
such policy, as long as the game is known.

As seen in [20], [21] (and similarly to standard Q-
learning), BAP requires each state to be visited “infinitely
often” for convergence to be ensured. However, in problems
with infinite state-space such condition is generally impossi-
ble to ensure and BAP cannot be successfully applied. The
reason behind this impossibility is easy to grasp: BAP relies
on past plays of the stage-game at each state, and there is
the possibility that a particular state has never been visited
before, no matter for how long the agents wander in the
environment.

In adapting BAP to infinite state-spaces, coordination
should rely not only in past visits to one particular state
but in the information provided by nearby states. As the
agents can no longer use the past history at a given state
to infer the other agents’ policy at that state, they use the
past history at states that are close to the desired state. If
the game is “well-behaved”, the optimal action in two states
that are sufficiently close will be the same.

Let Γ =
(

N,X , (Ak),P, r, γ
)

be a team Markov game
with compact state-space X ⊂ Rp and finite action space A.
To simplify the argument, we assume the underlying chain to
be ψ-irreducible and Harris recurrent, independently of the
agents’ choice of actions. We further assume that the optimal
function Q∗ is known and that the irreducibility measure
ψ is absolutely continuous w.r.t. the Lebesgue measure on
X . These assumptions greatly simplify the argument but, as
discussed ahead, can easily be alleviated without affecting
the validity our result.

Let Ht = {X0, A0, X1, . . . ,Xt−1, At−1} be the history
of past plays up to time t. At each time instant t, each
agent determines the distance between the current state Xt

and each state Xi occurring in Ht, given by ‖Xi −Xt‖.
It then chooses m such occurrences so as to minimize the
corresponding distance. The set thus obtained, denoted as
Sm(Xt,Ht), contains the m elements in Ht minimizing the
total distance to Xt. We remark that a particular state x ∈ X
may occur in Sm(Xt,Ht) more than once. Also, if two
occurrences Xti

and Xtj
verify ‖Xt −Xti

‖ =
∥

∥Xt −Xtj

∥

∥

and one must be chosen, then the most recent one should be
picked (e.g., if tj > ti in the previous situation, Xtj

would be
chosen). Due to the ψ-irreducibility and Harris recurrence of
the Markov chain, given any state x ∈ X and a corresponding
neighborhood U with positive ψ-measure, there is a time T0

such that, w.p.1, Sm(x,Ht) ⊂ U for t > T0. Once the set
Sm(Xt,Ht) is determined, the corresponding m plays can
now be used to proceed as in standard BAP (see [20], [21]
for details on BAP). We refer to this coordination mechanism
as approximate BAP (ABAP).

The next theorem establishes the convergence of ABAP.

Theorem 2: Let {Xt} be the ψ-irreducible and Harris
recurrent Markov chain obtained from the team Markov
game, as defined above. Further assume that ψ ≪ µLeb and

that r is continuous ψ-almost everywhere (ψ-a.e.).2 Then,
the agents following ABAP coordinate in an optimal Nash
equilibrium w.p.1 in ψ-almost every Γx.

Proof: See [9].

IV. THE CAQL ALGORITHM

In this section we introduce the main contribution the
paper, namely the coordinated approximate Q-learning

(CAQL) algorithm. As anticipated, this algorithm combines
approximate Q-learning and ABAP. With sufficient explo-
ration, CAQL guarantees that the estimates Qt converge
to a suitable approximation of Q∗ and the agents’ policies
converge to an optimal policy w.r.t. this approximation.

The basic procedure of CAQL is as follows. At each time
instant t, each agent k determines the set Sm(Xt,Ht) using
the similarity function φ. From this set, the agent uses BAP
to estimate the expected payoff of each action ak ∈ Ak

w.r.t. a virtual game V Gt obtained from Qt and chooses its
individual action as perscribed by standard BAP [20]. This
virtual game is a matrix game V Gt = (N, (Ak), rt) where
rt(a) takes the value 1 if, at state Xt, the joint action a is δt-
optimal w.r.t. Qt, i.e., if Qt(Xt, a) ≥ maxb∈AQt(Xt, b)−δt.
Once all individual actions Ak

t are chosen, yielding the
joint action At, the game moves to a new state Xt+1

according to the probabilities in P and all agents receive
the corresponding reward r(Xt, At, Xt+1). All agents now
use the observed transition (Xt, At, r(Xt, At, Xt+1), Xt+1)
to update the parameter vector θt

Several remarks are now in order. First of all, Theorem 1
requires a fixed learning policy that induces a geometrically
ergodic Markov chain; Theorem 2 requires the Markov chain
to be ψ-irreducible and Harris recurrent. It is easy to verify
[11] that the former (i.e., geometric ergodicity) implies the
latter (i.e., ψ-irreducibility and Harris recurrence).

Secondly, the use of ABAP necessarily means that the
learning policy is not fixed. Therefore, to ensure that both
algorithms are compatible, we need to guarantee that the
learning policy changes slowly (so that it “seems” fixed
in terms of the learning algorithm) and ensures sufficient
exploration (to meet the requirement π(x, a) > 0). The use
of GLIE policies (greedy in the limit with infinite exploration
[22]) readily solves this problem. Also, we emphasize that
the exploration of sub-optimal actions does not affect the
convergence of ABAP, as long as the probability of choosing
an “exploratory action” eventually decays to zero [20], as is
the case in a GLIE policy. The rate at which this exploration
probability must decay essentially depends on the step-size
sequence, as discussed in [22].

Thirdly, the δt parameter used to build the virtual game
V Gt accounts for the fact that the agents are deciding upon
an estimate Qθt

, instead of the limit function Qθ∗ . However,
as t→ ∞, the δt parameter should decay to zero. This needs
to be done at an appropriate rate, to ensure that no optimal
actions (w.r.t. Qθ∗ ) are ruled out too soon. That rate depends

2We denoted by µLeb the Lebesgue measure in Rp.
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on the rate of convergence of the algorithm. From [20], [23]
it can be shown that, as long as

lim
t→∞

√

log log(t)
t

δt
= 0, (7)

no optimal action is ruled out too soon.
All these considerations are formalized and summarized

in the following final result.
Theorem 3: Let (N,X , (Ak),P, r, γ) be a team Markov

game with compact state-space X ⊂ R
p and finite action-

space A = ×N
k=1A

k. Let πθt
be the θt-dependent policy

obtained from CAQL and assume that such policy verifies,
for all pairs (x, a),

|πθ − πθ′ | ≤ C ‖θ − θ′‖

for some constant C > 0 independent of x and a. Assume
that the Markov chain induced by the policy πθ, denoted as
(X ,Pθ), is geometrically ergodic for each θ with invariant
probability measure µθ

X ≪ µLeb, with a Radon-Nikodym
derivative bounded away from zero. Further assume that

• For each θ, the reward function r is continuous µθ
X -a.e.;

• The parameter δt decreases monotonically to zero and
verifies (7);

• The conditions of convergence for BAP are met [20];

Then, the sequence θt generated by CAQL converges w.p.1
to a parameter vector θ∗ and all agents converge in behavior
w.p.1 to a common, optimal policy w.r.t. Qθ∗ .

The proof of this theorem essentially formalizes the ideas
presented above and can be found in [24]

V. SOME ILLUSTRATIVE RESULTS

In this section we describe the results obtained in several
benchmark problems from the literature, featuring multi-
robot navigation tasks. We consider scenarios with a finite
number of states but include partial state observability arising
from noisy sensor measurements. As is well known [25],
it is possible to redefine the decision process in terms of
beliefs, computed using standard Markov localization [26].
This reduces the decision problem to a Markov game with
infinite state-space.

A. Test scenarios

In Figure 2 we describe some test scenarios for CAQL,
most of which are standard benchmarks used in the POMDP
literature [27]. The dark cells correspond to rooms and
the light ones correspond to hallways. Each scenario is
partitioned into discrete cells and, in each cell, each robot
can lie in 4 possible orientations. Each pair of color-matching
cells represents a starting/goal pair of cells for one particular
robot in the team.

In our formulation of the problem, all possible joint

positions for the group of robots must be considered. We
use a team Markov game

(

N,X , (Ak),P, r, γ
)

to model
the corresponding navigation problem. We also account for
partial observability by considering a centralized sensor that
provides all robots with similar sensorial information on

the whole team. In particular, we consider that surveillance
cameras keep the environment monitored. The images from
the cameras are processed in a central processor and the
processed data is then sent to all the robots. This processed
data contains the state of each robot as perceived by the
cameras. We consider that each robot has a distinctive feature
that allows the cameras to distinguish the different robots
while perceiving the state (position and orientation) of each
robot. Due to the fact that all robots receive the same obser-
vation, it is possible to define a common belief over the state-
space X , as in Section II. Therefore, we can immediately
cast the team Markov game with partial observability as
an equivalent team Markov game with infinite state-space,
defined in terms of beliefs: all robots maintain the same
belief on the position of the team in the environment and
decide upon this belief. Notice that, for each scenario, the
corresponding belief will be a |X |-dimensional probability
vector, with |X | the cardinality of X .

The team receives a reward of +20 for reaching the goal
configuration. Also whenever two robots choose an action
that can lead both robots to end up in the same cell, the
team receives a “penalty” of −10 and the movement does
not succeed. A more detailed description of the test scenarios
and robot models can be found in [24].

B. Results

We used a simulator to generate state transitions, ob-
servations and immediate rewards in the various scenarios
described. The initial belief state for each robot corresponds
to a uniform distribution over all non-goal states. Every time
the team reaches the goal configuration, it is reset to the
initial configuration. We allow the algorithm to learn for a
period of 106 time steps, to ensure sufficient exploration
of the state-action space. We then ran a series of trials
on each learnt policy to evaluate its performance. A single
trial consisted of a truncated trajectory of 250 simulated
steps starting from the initial state. The immediate rewards
were appropriately discounted and then added to yield a
sample of the total discounted reward. This was repeated for
2, 000 independent trials. The discount factor was 0.95 for
all experiments. We also recorded for each trial whether the
team was able to successfully reach the goal configuration
within the 250 time steps. We determined the percentage
of successful trials and used this percentage as a second
performance measure.

We applied CAQL to each scenario, using the natural basis
functions arising from the beliefs bt. In particular, we used
the basis functions φi,a, i = 1, . . . , |X |, a = 1, . . . , |A|, with
each φi,a given by φi,a(b, u) = b(i)Ia(u), for all beliefs b and
actions u ∈ A. We denoted by Ia the indicator function for
the set {a}. Using this approximation, the learnt parameter
vector θ∗ has the same dimension as the Q-functions for the
fully observable game. We used Boltzmann exploration to
ensure a suitable exploration/exploitation tradeoff.

The total reward obtained during the learning period,
for each of the 6 scenarios considered, is summarized in
Figure 3. The slope of the curve provides a rough indicator

3325



a) ISR; b) MIT; c) SUNY;

d) PENTAGON; e) CIT; f) CMU.

Fig. 2. Scenarios used for the topological navigation experiments.

of the performance of the team. Notice that, as t → ∞,
the exploration decays and it is evident from the figures the
instant when coordination was attained.

The total discounted reward in the test period (after
learning was terminated) is summarized in Table I. The
results presented correspond to the average over 2, 000 inde-
pentent Monte-Carlo trials. For the purpose of comparison,
we also present the results for a group of robots using only
approximate Q-learning (without coordination).

TABLE I

TOTAL DISCOUNTED REWARD AND PERCENTAGE OF SUCCESSFUL

MISSIONS IN THE DIFFERENT EXPERIMENTS USING CAQL AND

APPROXIMATE Q-LEARNING WITHOUT COORDINATION (BOTH AFTER

THE LEARNING PERIOD IS COMPLETE). WE PRESENT THE AVERAGE

TOTAL DISCOUNTED REWARD AND STANDARD DEVIATION OBTAINED

OVER 2000 MONTE-CARLO RUNS.

Env. CAQL No-Coord

ISR 9.916 (100%) 5.976 (100.00%)
MIT 6.963 (100%) 3.992 (100.00%)

PENTAGON 9.275 (100%) 5.036 (100.00%)
CIT 5.900 (100%) 3.666 (99.90%)

SUNY 1.800 (100%) 0.090 (94.85%)
CMU 1.628 (100%) 0.438 (99.10%)

When comparing the results of the “uncoordinated” team
with those of the coordinated team, it is evident that the
use of the coordination mechanism greatly improves the
performance of the team. Notice that both teams learn the
same Q-values, as they both use the same algorithm to learn
the game. This makes even more striking the difference in
performance observed in the two tests.

Also notice that the absence of coordination in terms of
the success rate of the team is much more relevant in the
larger environments. This fact can easily be interpreted. First
of all, the success rate measures the number of trials that
the team was able to reach the final configuration. In the

smaller environments, the final configuration can be reached
very rapidly, as long as the robots are able to minimally
coordinate. Therefore, mis-coordinations do affect the total
discounted reward received, but will hardly prevent the team
from reaching the goal. In the larger scenarios, because of the
size of the environments, reaching the goal takes a significant
amount of time and even one mis-coordination may translate
in a delay that the team cannot afford. This indicates that
coordination mechanisms do have a decisive influence in the
team’s ability to complete complex missions.

VI. CONCLUDING REMARKS

In this paper we introduced the CAQL algorithm to ad-
dress multi-agent RL problems with infinite state-spaces. We
explored the applicability of this methodology in cooperative
navigation tasks by applying CAQL to several large bench-
mark problems from the literature. In these test scenarios, a
group of mobile robots with centralized sensors must navi-
gate from an initial configuration to a target configuration.
We applied CAQL to this set of problems and verified that,
in all situations, the team is able to coordinate and reach the
target configuration, exhibiting a nearly perfect performance.

We note that CAQL has a broader applicability than
robotic navigation tasks, even if in the paper the method
was introduced envisioning this specific application. In fact,
CAQL can be used to address any general multi-agent
decision problem where coordination is fundamental. On the
other hand, robotic navigation tasks are particularly “well-
behaved”, since they exhibit some locality in the transitions
(a robot cannot “jump” between arbitrary states). This lo-
cality helps to decrease uncertainty and makes robotic tasks
particularly amenable to a reinforcement learning approach
relying in belief-states.

Two final comments on ABAP mechanism. Since we are
considering CAQL algorithm to run along an infinite trajec-
tory, storing the complete history (as required for ABAP) is
infeasible. In a practical implementation, we can rely on a
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Fig. 3. Cumulative reward during the learning period. The scale in both axis should be multiplied by 105.

fixed-size history, sufficiently large to properly sample the
state-space in a representative way. The exact length of the
history to be chosen will depend on the irreducibility measure
associated with the sampled chain and with the support of
Q∗. The second remark is concerned with the implementation
of the learning period. Allowing the learning period to be
conducted with the actual robot is often time consuming
and in some situations even lead to damage of the robot.
Therefore, it is customary to develop simplified simulation
models to run the learning process. Such simulation models
often capture the fundamental situations where decision-
making is required from the robot and allow for a much
faster and hazard-safe learning period. However, simulation
models can only provide approximate representations of the
actual situations and it is convenient that, once the learnt
policy is implemented in the real robot, the learning process
is allowed to continue (with no exploration) as the robot
interacts with the actual environment.
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