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Abstract

The concept of object affordances describes the possible ways whereby an
agent (either biological or artificial) can act upon an object. By observing the
effects of actions on objects with certain properties, the agent can acquire an
internal representation of the way the world functions with respect to its own
motor and perceptual skills. Thus, affordances encode knowledge about the
relationships between action and effects lying at the core of high-level cog-
nitive skills such as planning, recognition, prediction and imitation. Humans
learn and exploit object affordances through their entire lifespan, by either
autonomous exploration of the world or social interaction.

Building on a biological motivation and aiming at the development of
adaptive robotic systems, we propose a computational model capable of
encoding object affordances during exploratory learning trials. We represent
this knowledge as a Bayesian network and rely on statistical learning and
inference methods to generate and explore the network, efficiently dealing with
uncertainty, redundancy and irrelevant information. The affordance model
serves as base for an imitation learning framework, which exploits the recog-
nition and planning capabilities to learn new tasks from demonstrations. We
show the application of our model in a real-world task in which a humanoid
robot interacts with objects, uses the acquired knowledge and learns from
demonstrations. Results illustrate the success of our approach in learning
object affordances and generating complex cognitive behavior.

5.1 Introduction

Humans routinely solve tasks that require manipulation and interaction with
different types of objects. From simple everyday actions such as pulling up a
chair and sitting down, to complex skilled operations such as driving or
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repairing a car, humans purposely exploit the objects to achieve their goals.
Even when an object is not designed for a particular application, humans are
creative enough to give it new usages. For example, it is not uncommon to use a
chair to hang a jacket, even though a chair is made for sitting. In fact what
matters in obtaining a certain desired effect are the properties of the objects
rather than the objects themselves.

Objects have different usages depending on the agents’ motor and per-
ceptual skills. For example, a chair is ‘sitable’ only by an individual of a certain
height; a tree is ‘climbable’ only by animals with specific capabilities. James
J. Gibson denominated these ‘agent-dependent object usages’ as affordances
[1]. In that seminal work, all object affordances were defined as ‘action possi-
bilities” with reference to the actor’s motor and sensing capabilities. In a nut-
shell, affordances represent the link between an agent and the environment and
depend on the agent’s specific motor and perceptual skills.

Our dependence on objects to achieve even the simplest goals in daily tasks
emphasizes the importance of the concept of affordances in human cognition.
The knowledge of object affordances is exploited in most of our decisions:

e to choose the most appropriate way of acting upon an object for a certain
purpose

e to search and select objects that best suit the execution of a task

e to predict the effects of actions on objects

e to recognize ambiguous objects or actions, etc.

Affordances are at the core of high-level cognitive skills such as planning,
recognition, prediction and imitation.

A key question that this chapter addresses, from a computational point of
view, is how affordance knowledge can be acquired during an agent’s lifespan.
The importance of experience in mastering object-related skills suggests that
affordance knowledge is acquired as the agent autonomously interacts with
objects. In fact, infants interact with objects since early childhood and gradually
learn how to use them in order to solve complex tasks. For instance, in the task
of inserting shaped blocks into apertures [2], 14-month-old children demonstrate
manipulation skills that are more exploratory than functional while 18-month-
old children seem to understand the rules for fitting the blocks but cannot
implement them yet. It is only at 22 months that children are able to have some
success on the task. Finally, at 26 months they are able to solve the problem
systematically. The capability to manipulate and exploit object properties is the
result of a sophisticated ontogenetic development. Skills are acquired incre-
mentally according to a genetic program conditioned by the surrounding envir-
onment, i.e., through the interaction with the world and other people.

5.1.1 Robotic affordances

In this chapter, we discuss object affordances within the context of the long-
term goal of building (humanoid) robots capable of acting in a complex world
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and interacting with humans and objects in a flexible way. In particular, we
address the following key questions:

e What knowledge representation and cognitive architecture should such a
system require to be able to act in a complex and generally unpredictable
environment?

e How can the system acquire task- and domain-specific knowledge to be
used in novel situations?

From a robotics perspective, affordances are an extremely powerful con-
cept that captures the essential world and object properties in terms of the
actions the robot is able to perform. They can be used to predict the effects of
an action, to plan actions leading to a specific goal or to select the best object to
produce a given effect (see Figure 5.1).

44—\ Effects

Figure 5.1 Affordances as relations between (A )ctions, (O )bjects and
(E)ffects, that can be used for different purposes: predict the
outcome of an action, plan actions to achieve a goal or recognize
objects/actions

Extending the concept a bit further, affordances also play an important
role when interacting with other agents.

An artificial system can gain a tremendous amount of information by
observing another human or robotic agent performing actions on objects [3].
Affordance knowledge allows for action recognition in terms of the robot’s
motor capabilities and can be used, for example, in imitation [4]. Learning by
imitation is one of the motivations behind our approach: we are interested in
using generic affordances to learn a demonstrated task. We show that affor-
dance knowledge can successfully be used to obtain imitation-like behaviors,
e.g., allowing a robot to learn from a teacher a sequence of actions leading to a
particular outcome.
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Finally, it is important to emphasize that it is a tremendous task for a robot
to learn, from scratch, a model of its interaction with the environment. It
involves complex perceptual and motor skills, such as identifying objects and
acting upon them. One possible way to deal with such complexity is by con-
sidering a bottom-up developmental perspective: basic sensory-motor skills are
learned in initial stages upon which more complex cognitive capabilities can
then be built. From the start, the robot should be able to individuate objects
in the environment and execute directed exploratory motor actions upon them.
In the same wayj, it is only after having learned a reasonable model of the world
that imitation mechanisms will be operative and will enable the robot to learn
from other agents.

5.1.2 Related work

Gibson’s affordances [1] represent what the elements present in the environment
afford to the agent. This very general concept was originally applied to entities
such as surfaces (ground, air and water) or their frontiers. In psychology, there
has been a lot of discussion to establish a definition or model of affordances [5].
Several authors have shown the presence of some type of affordance knowledge
by comparing percepts among different people [6], measuring response times to
tasks elicited by specific object orientations [7] or perceiving heaviness [8].
Unfortunately, there is little evidence on how humans learn affordances.

From the robotics standpoint, affordances have been mainly used to relate
actions to objects. Several works use affordances as prior information. A
computational cognitive model for the learning of grasping actions by infants
was proposed in Reference 9. The affordance layer in this model provides
information that helps the agent to perform the action. Affordances have also
been used as prior distributions for action recognition in a Bayesian framework
[10] or to perform selective attention in obstacle avoidance tasks [11].

Several works have investigated the problem of learning affordances and
their subsequent application to different tasks. In Reference 12, a robot learned
the direction of motion of different objects when poked and used this infor-
mation at a later stage to recognize actions performed by others. The robot used
the learned maps to push objects so as to reproduce the observed motion. A
similar approach was proposed in Reference 13, where the imitation is also
driven by observed effects. However, this work focuses on the interaction
aspects and do not consider a general model for learning and using affordances.
The biologically inspired behavior selection mechanism of Reference 14 uses
clustering and self-organizing feature maps to relate object invariants to the
success or failure of an action.

All previous approaches learn specific types of affordances using the rele-
vant information extracted from sensor inputs. A more complete solution
has been recently proposed in Reference 15, where the learning procedure
also selects the appropriate features from a set of visual SIFT descriptors. The
work in Reference 16 focuses on the importance of sequences of actions
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and invariant perceptions to discover affordances in a behavioral framework.
Finally, based on the formalism of Reference 17, a goal-oriented affordance-
based control for mobile robots has been presented in Reference 18: previously
learned behaviors such as traverse or approach are combined to achieve goal-
oriented navigation.

Regarding imitation, one must consider two fundamental problems:
description of the observed motion in terms of the imitator’s own motor ca-
pabilities (body correspondence) and selection of the goal of imitation (imita-
tion metric). The former has been addressed in different ways in the literature.
Possible approaches include hand coding the correspondence between the
teacher and the imitator actions [19] or describing world state transitions at the
trajectory level [20].

Recent research in neuroscience has triggered some alternative ways of
addressing the correspondence problem. In particular, area F5 in the primate’s
premotor cortex is dominated by action coding neurons, but several of them also
respond to visual stimuli (e.g., canonical neurons [21] and mirror neurons [22,23]).
Canonical neurons show object-related visual responses that are, in the majority
of cases, selective for objects of certain size, shape and orientation. On the other
hand, mirror neurons respond to the observation of actions upon objects. They
respond to actions executed by the observer but also to similar actions executed
by another individual. This suggests that the same neuronal circuitry may be
involved in both the recognition and generation of object-directed actions.

The discovery of mirror neurons triggered a large interest in the study of
action recognition and imitation behaviors. Mirror neurons constitute an
observation/execution matching system that maps observed actions to the
observer’s internal motor representations. This facilitates the recognition of
actions because, unlike visual data, internal motor representations are invari-
ant to viewpoint and other visual distortions [10]. Mapping actions to internal
representations allows the imitation of actions even when individuals are not
morphologically identical. The imitator chooses from its own motor repertoire
the action that best matches the observations. It may choose to match only the
effect of the action (emulation) [12,13] or also part of the action itself [24].

In summary, imitation can be interpreted at different levels from trajectory
mimicking to effect emulation. There is no single solution for this problem and
even humans change imitation strategies taking into account contextual
information [25,26,27]. In artificial systems several authors have proposed
different imitation metrics that result in behaviors distinct from pure imitation
[19,24,28].

5.1.3 Our approach

Learning affordances from scratch without assuming any previous knowledge
can be overwhelming. On one hand, it involves learning relations between
motor and perceptual skills, resulting in an extremely high-dimensional search
problem. On the other hand, affordances can be defined more appropriately



92  Advances in cognitive systems

once the robot has already learned a suitable set of elementary actions to
explore the world.

We adopt a developmental approach [29,30], in which the robot acquires
skills of increasing difficulty on top of previous ones. Similarly to newborn
children, the robot ‘starts’ with a minimal subset of core (phylogenetic) ca-
pabilities [31] to bootstrap learning mechanisms that progressively lead to the
acquisition of new skills by means of self-experimentation and interaction with
the environment and other agents.

We follow the developmental roadmap proposed in Reference 32 and
extend it to include the learning and usage of affordances in the world
interaction phase. This framework considers three main stages in a possible
developmental architecture for humanoid robots: (i) sensory-motor coordina-
tion, (ii) world interaction and (iii) imitation (see Table 5.1). In the sensory-
motor coordination stage, the robot learns how to use its motor degrees of
freedom and to encode the relationships between motor actions and percep-
tion. In the world interaction phase, the robot learns by exploring the effects of
its own actions upon clements of the environment. In the imitation phase, the
robot learns by observing and imitating other agents.

Table 5.1 Learning stages of the developmental approach

Learn basic skills
Develop visual perception of objects

Sensorimotor Coordination

World Interaction Perception of effects and categorization
Improve motor skills
Learn object affordances

Prediction and planning skills

N ok w b=

Imitation Perform imitation games — Task inference from

observation

Affordances are central in the world interaction stage. In this stage, the
robot has already developed a set of perceptual and motor skills required to
interact with the world. In this chapter, we propose a general model to repre-
sent knowledge about affordances, i.e., relationships between the agent’s
actions, object properties and effects observed on these objects. The model
consists of a Bayesian network (BN) [33], a probabilistic graphical model that
represents dependencies between variables. In other words, a BN is a directed
acyclic graph whose nodes represent (random) variables and whose connec-
tions express the correlations between them. The BN thus encodes the relation
between different types of information. From the probabilistic model, the
robot can use the information available from its sensory inputs to make dif-
ferent types of predictions about the world, infer situations from incomplete
information and plan for actions depending on its goals.

In the second part of the chapter, we use the world knowledge acquired in
the form of affordances to be able to imitate others. Affordances were learned
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in a task-independent way and so they need to be written in a way that allows
sequential decision-making. Equipped with this knowledge, the robot is able to
infer the goal of an observed demonstration using Bayesian Inverse Reinfor-
cement Learning [34]. Affordances provide another source of invaluable
information, i.c., the recognition of observed actions. The robot is thus able to
extract information from the demonstration by recognizing the observed
motions in terms of its own motor repertoire.

We used the humanoid robot Baltazar (see Figure 5.4) to validate the
approach. We conducted several experiments to illustrate the capability of the
system to discover affordances associated with manipulation actions (e.g.,
grasp, tap and touch) when applied to objects with different properties (color,
size and shape). The effects of these actions consist of changes perceived in the
sensor measurements, e.g., persistent tactile activation for grasp/touch actions
and object motion for tap actions.

To summarize this chapter presents a model for learning and using affor-
dances and its application to robot imitation. The main characteristics of the
proposed model are: (i) it captures the relations between actions, object
features and effects; (ii) it is learned through observation and interaction with
the world; (iii) it identifies the object features that matter for each affordance;
(iv) it provides a seamless framework for the learning and exploiting affor-
dances; and (v) it allows social interaction by learning from others.

5.2 Affordance modeling and learning

In this section, we address the problem of modeling and learning object affor-
dances. According to Table 5.1, we assume the robot has already acquired a set
of skills that allows it to reason in a more abstract level than joint positions or
raw perceptions. More specifically, the robot has a parameterized set of actions
available that allows it to interact with the world and is able to detect and extract
categorical information from the objects around it (see Section 5.4 for further
details).

We pose the affordance learning problem at an abstraction level where the
main entities are actions, object properties and effects. A discrete random
variable A taking values in the set A= {a;, i=1,..., n,} models the activation of
the different motor actions. Each action ¢; is parameterized by a corresponding
set of parameters A;. For example, when approaching an object to perform a
grasp action, the height of the hand with respect to the object or the closing
angles of the hand are free parameters.' It is important to note that, from a
sensory-motor point of view, different values for these free parameters result in
the same action. Hence, at this stage of development, the robot cannot distin-
guish between them, since the differences will only be evident when interacting
with those objects.

! Refer to Section 5.4 for further details on the actual action implementation.
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The object properties and effects are also modeled using discrete random
variables as detected by the robot. We denote by F,={F/(1),..., F(n.)}
and F,={F,(1), ..., F,(n,)} the sets of random variables corresponding to the
descriptors (features) extracted by the perceptual modules and representing,
respectively, the agent itself and object o. Finally, we let E={E(1),..., E(n.)}
denote the set of random variables corresponding to the possible effects
detected by the robot after executing an action. The difference between object
features and effects is that the former sets can be acquired by simple observa-
tion, whereas the latter set requires interaction with the objects. Thus, clus-
tering the effects correspond to the first step of the world interaction stage in
Table 5.1 and precedes the actual learning of the affordances.

We use a BN to encode the dependencies between object features, actions
exerted upon such objects and effects of those actions (see Figure 5.2). Such a
representation has several advantages: it allows us to take into account the
inherent uncertainty in the world; it encodes some notion of causality; and it
provides a unified framework for both learning and using affordances. In
continuation, we briefly survey the fundamental concepts concerning repre-
sentation, inference and learning using BNs and show how to apply them to
our affordance problem.

Figure 5.2 BN model representing affordances. (a) An example of the proposed
model using: color, shape and size as object features and motion and
contact information as effects. (b) Generic model where the nodes
represent the action, A, the object features available to the robot,

Fay, - Fp and the effects obtained through the actions, E ), . .., E, )

A BN is a probabilistic graphical model that represents dependencies
between random variables as a directed acyclic graph. Each node in the net-
work represents a random variable Y, i=1, ..., n and the (lack of) arcs between
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two nodes Y; and Y, represents conditional independence of the corresponding
variables. BNs are able to represent causal models since an arc Y,— Y, can be
interpreted as Y; causes Y;[35]. The conditional probability d1str1but10n (CPD)
of each variable Y; in the network, denoted as P[Y;|Yp,(y,, 0], depends on the
parent nodes of Y;, denoted collectively as Yp,(y,), and on a set of parameters 0,.
The joint distribution of the BN thus decomposes in the following way:

P[Yy, ..., ,|0] = [ [P Yrurr,, 0] (5.1)

where 0 represents all the parameters in the different CPDs. If the conditional
distributions and the priors on the parameters are conjugate, the CPDs and
marginal likelihood can be computed in closed form, resulting in efficient
learning and inference algorithms.

The set of nodes in the network, Y, comprises the discrete variable 4 and
those in F,, F, and E, i.e.,

Y = {A, Fy(1), o, Fo(1y), Fo(1), ooy Fo(0), E(1), ... E(ne) }

Our ultimate goal is to uncover the relations between the random variables in
Y, representing actions, object features and effects (see Figure 5.2). To this
purpose, the robot performs an action on an object and observes the resulting
effects. By repeating this procedure several times, the robot acquires a set of N
samples of the variables in Y, D= {y'"}2

Let us assume for the moment that the dependencies between the variables
in Y are known, i.e., the structure of the BN representing the affordances is
known. Given the discrete representation of actions, object features and effects,
we can use a multinomial distribution and the corresponding conjugate — the
Dirichlet distribution — to model the CPDs P[Y;|Yp,y,, 0;] and the corre-
sponding parameter priors P[f;]. Let y; denote the range of values of the ran-
dom variable Y; and yp,(y, the range of values of the parents of Y;. Assuming
independence between the samples in D, the marginal likelihood for the ran-
dom variable Y; and its parents given is D [36].

N
[)/INLVpa(y, P! ‘y;l’a(y,)’ 0,]P[0:]d0;
i=1

Vi | aly; ‘
- ﬁ T(oy) T4 Dok + Nyg)
P0( +Ny) o Tlou)
where I" represents the gamma function, N counts the number of samples in
which Y;=j and Yp,,) =k, and N;; = Zk k. The pseudocounts o5 denote
the Dirichlet hyperparameters of the prior distribution of 0; and o = >, o

2 Capital letter Y represents a random variable, lowercase y represents its realizations.
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The marginal likelihood of the data is simply the product of the marginal
likelihood of each node,

P[D|G] = P[Y'"|G] = HPD‘NIypa@,] (5.2)
where we have made explicit the dependency on the graph structure, G.

5.2.1 Learning the structure of the network

We are now interested in learning the structure of the network, G, which is
actually an instance of a model selection problem. In a Bayesian framework,
this can be formalized as estimating the distribution over all possible network
structures Geg given the data. Using the Bayes rule, we can express this dis-
tribution as the product of the marginal likelihood and the prior over graph
structures,

P[G|D] = #P[D|G]P[G] (5.3)

where n=1/P[D] is a normalization constant. The term P[G] (the prior) allows
to incorporate prior knowledge on possible structures. Unfortunately,
the number of possible BN structures is superexponential in the number of
nodes [37]. Thus, it is infeasible to explore all the possible graph structures and
one has to rely on some form of approximation of the full distribution. Markov
Chain Monte Carlo (MCMC) methods have been proposed to approximate the
distribution P[G|D] [38]. In our case, this can be important during the first
iterations of the learning process, as it allows the robot to keep a set of alter-
native hypotheses on the possible affordance model.

As the robot performs the actions itself, it is usually able to obtain infor-
mation on all the variables Y; in the BN. The model can also be applied to
learning by observation, i.e., by observing other people performing the actions.
However, in this situation there may be some missing information. For example,
the action is not directly available and has to be inferred from visual measure-
ments. In this case, the learning task is much harder and several algorithms have
been proposed such as augmented MCMC or structural EM [39].

Finally, it is important to consider causality. The previous learning tech-
niques are able to distinguish among equivalence classes of graph structures.’
An equivalence class contains different causal interpretations between the
nodes in the network. It is necessary to use interventional data, where some of
the variables are held fixed to a specific value to disambiguate between graph
structures in the same equivalence class, so as to be able to infer the correct
causal dependency.

In the case of a robot interacting with its environment, there are several
variables that are actively chosen by the robot: the action and the object. These
variables are actually interventional, since they are set to their specific values

3 Two directed acyclic graphs G and G’ are equivalent, if for every BN B=(G, ®) there exists
another network B’=(G’, ®’) such that both define the same probability distribution.
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by the robot at each experience. Interventional data is currently an important
research topic within BN learning algorithms [40]. Under the assumption of a
perfect intervention of node Y;, the value of Y; is set to the desired value, y},
and its CPD is just an indicator function with all the probability mass assigned
to this value, i.e., P[Yi|Yp,(y),0:] = I(¥; = ;). As a result, the variable Y; is
effectively cut off from its parents Yp,(y,).

5.2.2  Parameter learning and inference

Once the structure of the network has been determined, the parameter 0; of
each node is estimated using a Bayesian approach [41]. The estimated para-
meters can still be updated on line, allowing the incorporation of the infor-
mation provided by new trials.

Since the structure of the BN encodes the relations between actions, object
features and effects, we can now compute the distribution of a (group of)
variable(s) given the values of others. The most common way to do this is to
convert the BN into a tree and then apply the junction tree algorithm [42] to
compute the distribution of interests. It is important to note that it is not
necessary to know the values of all the variables to perform inference.

Based on these probabilistic queries, we are now able to use the affordance
knowledge to answer the questions outlined in Figure 5.1 simply by computing
the appropriate distributions. For instance, predicting the effects of an
observed action «; given the observed object features f; can easily be performed
from the distribution P[E|A=a,;, F=f;]. The query can combine features,
actions and effects both as observed information and as the desired output.

5.3 Imitation learning

After interacting with the objects, the robot has acquired important informa-
tion to support the social stage of its development. This knowledge provides the
basis for allowing the robot to learn how to perform tasks by observing others
and imitate their goals and actions. A general model for imitation learning is
presented in the following. We adopt the formalist of Reference 24 to learn
complex task descriptions from human demonstrations. Afterwards, and based
on this formalism, we explain how affordance knowledge can be used to provide
the required inputs for imitation learning.

5.3.1 A model for imitating tasks

To imitate complex tasks, the robot must first understand the tasks executed
by others. The robot will observe an action/sequence of actions by a human
demonstrator and then choose its own actions accordingly. At each time instant,
the robot must choose an action from its action repertoire 4, depending on the
perceived state of the environment. We represent the state of the environment at
time ¢ by X, and let x be the finite set of possible environment states.
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At this level of abstraction, action selection can be seen as a decision process.
The state of the world evolves according to some probabilistic transition model,

PlX;y1 =z|X, =x,4, = a] = P,(x,2) (5.4)

where A4, denotes the robot’s action at time ¢. The action-dependent transition
matrix P, thus describes the dynamic behavior of process {X,}.

At this stage we assume that the robot is able to recognize the actions per-
formed during the demonstration. Later, we will show how the affordance
knowledge can be used to achieve this goal. Bearing this assumption in mind, we
consider that the demonstration consists of a sequence H of state—action pairs.

H={(x1,a1), (x2,a2), e, (X1, i), vy (Xn, an) }

Each pair (x;, a;) exemplifies to the robot the expected action («;) in each of the
states visited during the demonstration (x;). From this demonstration, the
robot is then expected to perceive what the demonstrated task is and learn how
to perform it optimally, possibly relying on some experimentation of its own. A
policy is a map n:X— A4, a decision-rule that determines the action of the robot
as a function of the state of the environment. The robot must then infer the task
from the demonstration and learn the corresponding optimal policy.

In our formalism, the task can be defined using a function r:X—R
describing the ‘desirability’ of each particular state xeX. This function r works
as a reward for the robot and, once r is known, the robot should choose its
actions to maximize the total reward collected during its lifespan, represented
as the functional:

o0

J(x, {41}) = Z Xt|X0—X]

where 7 is a discount factor between 0 and 1 that assigns greater importance to
those rewards received in the immediate future than to those in the distant
future. We remark that, once r is known, the problem falls back to the standard
formulation of dynamic programming [43].

To express the recursive relation between the function r describing the task
and the optional behavior rule, we define the function ¥V, as follows:

V. (x) = max r(x +yZP X,2) (5.5)

zZEX

The value V,(x) represents the expected (discounted) reward accumulated
along a path of the process {X,} starting at state x when the optimal behavior
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rule is followed. The optimal policy associated with the reward function r is
thus given by:

m(x) = argmax | (x) +7 > _ Pu(x,2)V;(2)

acA zeX

The computation of =, (or, equivalently, V) given P and r is a standard pro-
blem and can be solved using any of several standard methods available in the
literature [43].

5.3.2 Learning task descriptions

In the formalism just described, the fundamental imitation problem lies in the
estimation of the function r from the observed demonstration H. Notice that
this is closely related to the problem of inverse reinforcement learning as
described in Reference 44. We adopt the method described in Reference 24,
which is a basic variation of the Bayesian inverse reinforcement learning
(BIRL) algorithm in Reference 34.

For a given function r, we define the likelihood of a pair (x, a)eX x A as:

eﬂQr(x‘a)
Ly(x,a) = P[(x,a)|r] = T, 0 D)

where Q,(x, a) is defined as:

Or(x,a) = r(x) +7 Y _Pu(x,2)V,(2)

zZEX

and V, is as in (5.5). The parameter # is a user-defined confidence parameter
that we describe further ahead. Notice that L,(x, a) is simply a softmax dis-
tribution over the possible actions, and translates the plausibility of the choice
of action « in state x when the underlying task is described by r. Given a
demonstration sequence

H= {(xl;al); (X27a2)7 R (xnaan)}

the corresponding likelihood is:
L(H) =[] Lr(xi ;)
i=1

We use MCMC to estimate the posterior distribution over the space of possible
r-functions (usually a compact subset of R?, p >0) given the demonstration, as
proposed in Reference 34. We then choose the r-function corresponding to the
maximum of this distribution. Since we consider a uniform prior to the dis-
tribution over r-functions, the selected reward is the one whose corresponding
optimal policy ‘best matches’ the demonstration. The confidence parameter



100  Advances in cognitive systems

n determines the ‘trustworthiness’ of the demonstration: it is a user-defined
parameter that indicates how ‘close’ the demonstrated policy is to the optimal
policy [34].

Some remarks are in order. First of all, to determine the likelihood of the
demonstration for each function r, the algorithm requires the transition model
in P. If such transition model is not available, then the robot will only be able
to replicate particular aspects of the demonstration. However, as argued in
Reference 24, the imitative behavior obtained in these situations may not
correspond to actual imitation.

Second, it may happen that the transition model available is inaccurate. In
this situation (and unless the model is significantly inaccurate) the robot should
still be able to perceive the demonstrated task. Then, given the estimated
r-function, the robot may only be able to determine a suboptimal policy and will
need to resort to experimentation to improve this policy. We discuss these
aspects in greater detail in the continuation.

5.3.3 Combining affordances with imitation learning

In this section, we discuss, in greater detail, how the information provided by
the affordances described in Section 2 can be combined with the imitation
learning approach described in Section 5.3.2. We discuss the advantages of this
approach, as well as several interesting issues that arise from this combination.

In the methodology described in Section 5.3.2. We assumed the robot to be
able to recognize the actions performed by the demonstrator. This action
recognition does not need to be explicit, i.e., the agent is not required to
determine the actual movements executed by the demonstrator. Instead, it
needs only to interpret the observed action in terms of its own action repertoire.
This interpretation may rely on the observed state transition or in the corre-
sponding effects. It is important to emphasize that transitions and effects are
different concepts: the same transition may occur from different actions/effects
and the same effect can be observed in different transitions. To clarify this
distinction, consider moving or jumping from one place to the other: the effects
are different but the transition is the same. For another example, consider
moving between different places with the same speed: the effect is the same
(motion at a given speed) but the transitions are different.

If no action recognition/interpretation takes place, the robot will generally
be able to learn only how to replicate particular elements of the observed
demonstration. In our approach we want the robot to learn the task more than to
replicate aspects of the demonstration. As seen in Section 5.2, affordances pro-
vide a functional description of the robot’s interaction with its surroundings as
well as the action recognition capabilities necessary to implement imitation.

Affordance-based action recognition/interpretation works as follows. For
each demonstrated action, the robot observes the corresponding effect. The
affordance network is then used to estimate the probability of each action in
the robot’s action repertoire given the observed effects, and the action with
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greatest probability is picked as the observed action. Clearly, there will be some
uncertainty in the identification of the demonstrated action, but as will be seen
in the experimental section, this does not significantly affect the performance
of the learning algorithm.

On the other hand, given the demonstration — consisting on a sequence of
state—action pairs — the robot should be able to infer the task to be learned.
This means in particular that once the robot realizes the task to be learned, it
should be able to learn how to perform it even in situations that were never
demonstrated.

Choosing between two policies generally requires the robot to have a model
of the world. Only with a model of the world will the robot have the necessary
information to realize what task is more suitably accomplished by the demon-
strated policy. If no model of the world is available, then the robot will generally
only repeat the observed action pattern, with no knowledge on what the under-
lying task may be. Also, the absence of a model will generally prevent the robot
from generalizing the observed action pattern to situations never demonstrated.

As argued in Section 5.2, affordances empower the robot with the ability to
predict the effect of its actions in the surrounding environment. Once the ade-
quate state space for a particular task is settled, the information embedded in the
affordance network can be used to extract the dynamic model describing the
state evolution for the particular task at hand. This action-dependent dynamic
model consists of the transition matrix P described in the previous subsection.

Figure 5.3 depicts the fundamental elements in the imitation learning
architecture described. It is important to notice that the affordance network is
task independent and can be used to provide the required transition informa-
tion for different tasks. Of course, the interaction model described in the
affordance network could be enriched with further information concerning
the state of the system for a specific task. This would make the extraction of the
transition model automatic, but would render the affordance network rask
dependent. This and the very definition of affordances justify the use of a more
general affordance model, although, in such a case, the transition model might
have to be extracted separately for each particular task. This means that imi-
tation can be successfully implemented in different tasks, provided that a single
sufficiently general and task-independent model of interaction is available
(such as the one provided by the affordances).

Another important observation is concerned with the fact that the affor-
dance network is learned from interaction with the world. The combination of

Demonstration

Task representation
LTI X} o Task
emo asl
[ > interpretation |:> inference I:> Reward function r
(Affordances) (BIRL)
{(x4,€1), . .(xn, €0)}
{(xq,a), ..., (Xn, @n)}

Figure 5.3 Representation of the fundamental elements of an imitation learner
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both learning blocks (affordance learning and imitation learning) gives rise to a
complete architecture that allows the acquisition of skills ranging from simple
action recognition to complex sequential tasks.

In the remainder of the chapter, we describe the implementation of this
combined architecture in a humanoid robot. We illustrate the learning of a
sequential task that relies on the interaction model described in the affordance
network. We discuss the sensitivity of the imitation learning to action recog-
nition errors.

5.4 Experimental setup

In this section we present the robot used in the experiments, the experimental
playground and the basic skills required to start interacting with the world and
to learn the affordances. These skills include the basic motor actions and the
visual perception of objects and effects.

5.4.1 Robot platform and playground

The experiments were done using Baltazar, a 14-degrees-of-freedom humanoid
torso composed of a binocular head and an arm (see Figure 5.4). The robot has
implemented a set of parameterized actions based on a generic controller:

@ = mi(®*7y7)~a l/J)

Figure 5.4 Experimental setup. (a) The robot’s workspace consists of a white
table and some colored objects with different shapes, sizes and colors.
(b) Objects on the table are represented and categorized according
to their size, shape and color, e.g., ‘ball’ and ‘square’
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where © represents the time derivatives of the controlled variables, ®" is the
final objective and y the available proprioceptive measurements of the robot.
Parameters iy describe the kinematics/dynamics of the robot. Parameters A can
be used to shape the controller, i.e., change desired velocities, energy criteria or
postures. They can be tuned during affordance learning (refer to Figure 5.8 in
Section 5.8), but are frozen by the system during the initial learning stage.

In this work we focus on object manipulation actions such as grasping,
tapping and touching (see Figure 5.5). Each of these actions consists of three
distinct steps: (i) bring the hand to the field of view in open loop; (ii) approach
the object using visual servoing; and (iii) actually grasp, tap or touch the object.
The two former steps are learned by self-experience (see [32] for further
details), while the latter is pre-programmed due to practical limitations of our
current robotic platform. Using this approach, Baltazar is able to perform
three different actions. In terms of our model, we have A= {a;=grasp(1),
a>=tap(4), a3 =touch(2)}, where 1 represents the height of the hand in the 3D

workspace when reaching the object in the image.

(a) (b)

Figure 5.5 Examples of actions as seen by the robot. (a) Grasping. (b) Tapping

The robot executed its actions upon several different objects, each having one
of two possible shapes (‘box’ and ‘ball’), four possible colors and three possible
sizes (see Figure 5.4). We recorded a set of 300 trials following the protocol
summarized in Figure 5.6. In each trial, the robot was presented with a random
object. Baltazar randomly selected an action from its repertoire and approxi-
mated its hand to the object. On reaching the object, it performed the selected
action (grasp(4), tap(4) or touch (1)) and returned the hand to the initial position.
During action execution, the object features and effects were recorded. Note that
the robot does not receive any feedback concerning the success or failure of the
actions. The goal of this learning stage is to understand the causal relations
between actions and effects in an unsupervised manner.

5.4.2 Visual perception of objects

Regarding object perception and feature extraction, we assume the system has
simple segmentation and category formation capabilities already built in. For
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Observe Observe
object effects

Figure 5.6 Experiments protocol. The object to interact with is selected
manually and the action is randomly selected. Object properties are
recorded in the Init to Approach transition, when the hand is not
occluding the object. The effects are recorded in the final Observe.
Init moves the hand to a predefined position in open loop

the sake of experimental simplicity, we have constructed the ‘playground’
environment shown in Figure 5.4. In this environment, the robot plays with
simple colorful objects over a white table and observes people playing with the
same objects. At this stage, we rely on fast techniques such as background and
color segmentation to allow the robot to individuate and track objects in real
time. Along time, the robot collects information regarding simple visual object
properties, such as color, shape, size, etc. Figure 5.4 illustrates the robot’s view
of several objects, together with their color segmentation and extracted con-
tour. After interacting with the objects for some time, the robot is able to group
their properties into meaningful categories. The set of visual features used
consist of color descriptors, shape descriptors and size (in terms of the image).
The color descriptor is given by the hue histogram of pixels inside the seg-
mented region (16 bins). The shape descriptor is a vector containing measure-
ments of convexity, eccentricity, compactness, roundness and squareness.

5.4.3 Perception of effects

In our framework, effects are defined as salient changes in the perceptual state
of the agent that can be correlated to actions. For example, upon interacting
with an object, the robot may observe sudden changes in the object position or
tactile information.
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All effects are processed in the same way: when the action starts, the agent
observes its sensory inputs during a certain time window that depends on the
action execution time and the duration of the effects. It then records the cor-
responding information flow. We fit a linear model to the recorded temporal
information associated with each observed effect and use the corresponding
inclination and bias parameters as a compact representation of this effect. The
regression parameters for the velocity of either an object, the hand or the
‘object—hand pair’ are determined from a sequence of image velocity norms. In
this case, only the inclination parameter is used, since the bias parameter only
reflects the absolute position in the image. Concerning contact effects, we
consider only the bias parameter (offset), which gives a rough estimation of the
duration of contact.

5.4.4 Discretization of perceptual information

This is an important step in the overall learning architecture, since it provides
the basis for the discretization and categorization used in the affordance
learning algorithm. In our example, we used features describing object’s color,
shape and size. Each feature takes values in some n-dimensional vector space.
We applied the X-means algorithm [45] to detect clusters in the space of each
object feature and in the effects. We also discretized the space of the free
actuator parameters, A, using a predefined resolution and the same clustering
algorithm. It is important to note that our ultimate goal is to learn the affor-
dances given a set of available motor and perceptual skills and not to make a
perfect object classification. Indeed, the clustering introduces some errors,
among other things, due to different illumination conditions during the trials.
As such, the features of some objects were misclassified and the affordance
learning had to cope with this noise.

Figure 5.7(a) shows the results of the X-means algorithm for the object
shape feature. The two resulting clusters are able to easily separate ‘balls’
from ‘boxes’ based mostly on roundness and eccentricity descriptors.
Figure 5.7(b) gives the equivalent result for colors, where the feature vector is a
histogram of hue values. As the objects have uniform color, each histogram has
only one salient peak. Finally, for the unidimensional size, three clusters were
enough to represent five different sizes of the objects presented to the robot.

Figure 5.7(c) shows the classes of object velocities and contact patterns
detected by the robot, following the procedure described in Subsection 5.4.3.
Roughly speaking, a grasp action resulted in ‘medium’ velocity (except in one
case where the ball fell down the table), a tap action produced different velocity
patterns depending on the shape and size of the object and a touch action induces
small velocities. Also, contact information was more pronounced for grasp and
touch actions than for tap ones. The combination of the different features pro-
duced patterns in the feature space that were used to infer statistical dependencies
and causality. Table 5.2 summarizes the clustering results for the different vari-
ables and provides the notation used in the remainder of this section.
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This categorization was conducted after the robot interacted with different
objects for several trials, during which it collected information about the effects
of its actions on the objects. The obtained clustering resulted in groups that are
close in the sensory space. We thus have to assume that the motor and per-
ceptual capabilities of the robot are such that the same action applied to the
same object will, in average, yield similar effects. For example, all successful
grasps will have the pressure sensors persistently activated. This clustering is
not restricted to observed objects, because new objects will be categorized
according to their similarity to known ones.

5.5 Experimental results

In this section we present the experimental results obtained with our approach.
We start by illustrating the affordance learning stage, carefully evaluating its
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Figure 5.7 Clustering of object features and effects. (a) Shape description of
the objects. Five features: convexity, eccentricity, compactness,
roundness and squareness describe the objects. For the objects
considered in the experiments, box and balls, they can be clustered
automatically. Different clusters are represented by circles or plus
signs. (b) Color histograms with the corresponding clusters.

Each bin relates to a given Hue value. The clusters correspond to:
yellow, green;, green, and blue. (c¢) Clustering of object velocity
and contact. For each observation, grasp is represented by ““x”,
tap by “A” and touch by “O”. The vertical lines show the cluster

boundaries for velocity and the horizontal line for contact
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Figure 5.7 Continued

capabilities. We then proceed to presenting the application of the learned

affordances in interaction games and in learning by demonstration of a com-
plex task.

5.5.1 Affordances

We now describe the different experiments conducted to illustrate the ability of
the proposed model to capture object affordances.
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Table 5.2 Summary of variables and values

Symbol Description Values

A Action Grasp, Tap, Touch

H Height Discretized in ten values

C Color Green;, Green,, Yellow, Blue
Sh Shape Ball, Box

S Size Small, Medium, Big

v Object velocity Small, Medium, Big

HV Hand velocity Small, Medium, Big

Di Object-to-hand velocity Small, Medium, Big

Ct Contact duration None, Short, Long

5.5.1.1 Controller optimization

The objective of the first experiment is to find the influence of a free actuator
parameter on an action. The robot tries the action for different values of the
free parameters. For a grasp, these parameters are closure of the fingers and
approaching height of the hand. The former is used after reaching the object in
the closing of the hand, whereas the latter is a free parameter of the sensory-
motor map used to approximate the hand to the object. We computed the
maximum likelihood graph with a random starting point and BDeu priors [36]
to give uniform priors to different equivalence classes.*

Figure 5.8(a) shows how the resulting network captures the dependency of
the effects on these parameters. Interestingly, the CPDs provide the probability
of producing different effects according to the values of the free parameters.
Figure 5.8(b) shows the estimated probability of different height values con-
ditioned on the observation of a long contact (indicating a successful grasp) for
medium and small objects. Since big objects cannot be grasped by the robot’s
hand, all heights have zero probability for this class.

Note that the distribution of Figure 5.8(b) can be used directly to adjust the
height of the action for different object sizes and, as such, perform an optimi-
zation of the controller parameter based on the target object.

5.5.1.2 Affordance network learning

In the second experiment, we illustrate the robot’s ability to distinguish the
effects of different actions and simultaneously identify the object features that
are relevant to this purpose. As in the previous experiment, we use BDeu priors
and random initialization.’ For the MCMC algorithm, we used 5 000 samples
with a burn-in period of 500 steps.

4 The implementation of the algorithms is based on the BNT toolbox for Matlab, http://bnt.
sourceforge.net/.

3 Although it is possible to use conditional independence tests to provide a rough initialization, in
our case we got similar results using randomly generated networks.
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Figure 5.8 Tuning the height for grasping a ball. (a) Dependencies
discovered by the learning algorithm. The action and shape for
this example are fixed and the color does not have an impact on
the effects. Node labels can be found in Table 5.2. (b) CPD of
the height value given that the robot obtained a long contact
(successful grasp)

Figures 5.9(a—) show the three most likely networks computed by MCMC
and Figure 5.9(d) shows the posterior probability distribution over all sampled
models. To show the convergence of the network toward a plausible model, we
have estimated a network structure using datasets of different lengths. For each
length, we have randomly created 100 datasets from the complete dataset,
estimated the posterior over-graph structures using MCMC and computed the
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Figure 5.9 Affordance model estimated by the MCMC algorithm. Node labels
can be found in Table 5.2. (a—c) Three most likely network struc-
tures obtained by the MCMC algorithm for three different datasets
of common length. (d) Posterior probability over graphs, as com-
puted by MCMC

likelihood of the whole data for the most likely model. Figure 5.10 shows how
the marginal likelihood of the data converges as the length of the dataset
increases. The figure also indicates that, after 100 trials, the improvement of
the likelihood of the data given more experiments is very small, since the model
was already able to capture the correct relations.

5.5.1.3 Affordances conditional probability distributions
To ensure that the network actually captures the correct dependencies, we
computed some illustrative distributions. The actual dependencies are encoded
in the multinomial CPDs of each node and, as such, we cannot rely on the
typical mean squared error to validate the fitting on the training set. Although
there is no ground truth to compare the estimated network structure, we see
that color has been detected as irrelevant when performing any action. Shape
and size are important for grasp, tap and touch since they have an impact on
the observed velocities and contact.

Figure 5.11(a) depicts the predicted contact duration for a grasp action on a
ball of different sizes. It basically states that successful grasps (longer contact
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Figure 5.10 Marginal likelihood of the data given the learned network structure
as the number of trials included in the dataset increases. The ver-
tical bars show the variance of the likelihood

between the hand and the object) occur more often with smaller balls than with
bigger ones. Figure 5.11(b) shows the distribution over ball sizes after a tap
action for different observed velocities. According to these results, smaller
balls move faster than bigger ones and medium ball velocities are somewhat
unpredictable (all velocities have similar likelihood). This actually reflects the
behavior of the objects during the trials. For example, the mean and variance of
the ball velocity (u [pixel/frame] and o [pixel®/frame®]) were (33.4, 172.3), (34.3,
524.9) and (17.5, 195.5) for a small, a medium and a big ball, respectively.

We can also verify if the robot is able to recognize the actions in the training
set. To this purpose, we performed leave-one-out cross-validation. For each
trial, we computed the network structure and parameters using the data from
the remaining trials and the MCMC algorithm. We then estimated the prob-
ability of each action given the object features and the object velocity, hand
velocity and object—hand velocity. Since contact is a proprioceptive measure-
ment, it is not usually available when observing other actions. The most likely
action was correctly identified in more than 85% of the tests. The errors were
due mainly to the absence of contact information, which makes touching and
tapping of boxes very similar from the point of view of observed effects. After
including contact information, the ratio of correct recognition raised to 98%.

5.5.1.4 Summary

We have shown how the robot can tune its motor controllers through experi-
mentation by including the effects of its actions. Once this information is
available, the robot can start to establish relationships between the features of
the objects and the effects of its actions. The learning of the affordance model
depends on the motor and perceptual skills of the robot and was conducted in a
completely unsupervised manner. There is no notion of success or failure and
the network may not be able to distinguish between nonseparable objects,
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Figure 5.11 Examples of CPDs for the learned network. (a) CPD of the con-
tact duration when grasping a box, for different values of the size
parameter: P[Ct|S, A= grasp, Sh=box]. (b) CPD of the size of a
tapped ball, for different values of the observed velocity:
P[S|V, A=tap, Sh=ball]

given the used descriptors. However, it is still able to construct a plausible
model of the behavior of the different objects under different actions that can
readily be used for prediction and planning.

5.5.2 Interaction games

Before delving in the problem of imitation learning, we present the results
obtained in several simple interaction games using the learned affordance
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network. These results further validate the use of our proposed affordance
model and illustrate the basic prediction, recognition and planning capabilities
at the core of imitation learning.

We implemented a one-step emulation behavior. The robot observes a
demonstrator perform an action on a given object. Then, using one of the
functions described in Figure 5.1, it selects an action/object that is more likely
to achieve the observed effect.

Figure 5.12 depicts the demonstration, the objects presented to the robot
and the selected action/object for different situations. We used two different
demonstrations, a tap on a small ball, resulting in high velocity and medium
hand—object distance and a grasp on a small square, resulting in small velocity
and small hand—object distance. Notice that contact information is not available
when observing others. The goal of the robot is to replicate the observed effects.

The first situation (Figure 5.12a) is trivial, as only tap has a nonzero
probability of producing high velocity. Hence, the imitation function selected a
tap on the only object available. In Figure 5.12(b), the demonstrator performed
the same action, but the robot had to decide between two different objects.
Table 5.3 summarizes the probability of observing the desired effects given the
six possible combinations of actions and objects. The robot selected the one
with highest probability and thus performed a tap on the ball.

Figures 5.12(c) and 5.12(d) illustrate how the inclusion of the object features
in the goal criteria may lead to different behaviors. After observing the grasp
demonstration, the robot had to select among three objects: a big yellow ball,
a small yellow ball and a small blue box. In the first case (Figure 5.12c), the
objective was to replicate the same effects. The probability for each of the objects
is 0.88, 0.92 and 0.52, respectively, and the robot grasped the small yellow ball
despite the presence of the actual object used in the demonstration. Notice that
this is not a failure, since it maximizes the probability of a successful grasp. This
was the only requirement specified by the task goal. When the goal is modified to
also include a similar shape, the robot successfully selects the blue box (Figure
5.12d). More details are provided in Reference 46.

In the continuation, we address the more complex scenario in which the
robot must learn, by imitation, a full sequence of actions.

5.5.3 Imitation learning

To implement the imitation learning algorithm described in Section 5.3, we
considered a simple recycling game in which the robot must separate different
objects according to their shape (Figure 5.13). In front of the robot are two
slots (Left and Right), where three types of objects can be placed: large balls,
small balls and boxes. The boxes should be dropped in a corresponding con-
tainer and the small balls should be tapped out of the table. The large balls
should be touched upon, since the robot is not able to efficiently manipulate
them. Every time a large ball is touched, it is removed from the table by an
external agent. Therefore, the robot has a total of six possible actions available:
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Table 5.3 Probability of achieving the desired effects for each possible action
and each object in Figure 12(b)

Object\Action Grasp Tap Touch

Blue big ball 0.00 0.20 0.00

Yellow small box 0.00 0.06 0.00
Left Right

o

Touch the large

Kick the balls ball Drop the boxes
out of the table in the pile

Figure 5.13 A simple recycling game

Touch Left (TcL), Touch Right (TcR), Tap Left (TpL), Tap Right (TpR),
Grasp Left (GrL) and Grasp Right (GrR).

To describe the process {X;} for the task at hand, we considered a state
space consisting of 17 possible states. Of these, 16 correspond to the possible
combinations of objects in the two slots (including empty slots). The 17th
state is an invalid state that accounts for the situations where the robot’s
actions do not succeed. As described in Section 5.3, determining the dynamic
model consists of determining the transition matrix P by considering the pos-
sible effects of each action in each possible object. From the affordances in
Figure 5.9 the transition model for the actions on each object are shown in
Figure 5.14. Notice that, if the robot taps a ball on the right while an object
is lying on the left, the ball will most likely remain in the same spot. However,
since this behavior arises from the presence of two objects, it is not captured in
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Figure 5.14 Transition diagrams describing the transitions for each slot/object

the transition model obtained from the affordances. This means that the transition
model extracted from the affordances necessarily includes some inaccuracies.

To test the imitation, we provided the robot with an error-free demonstra-
tion of the desired behavior rule. As expected, the robot was successfully able to
reconstruct the optimal policy. We also observed the learned behavior when the
robot was provided with fwo different demonstrations, both optimal, as
described in Table 5.4. Each state is represented as a pair (S;,S,) where each state
element can take one of the values ‘Ball’ (Big Ball), ‘ball’ (Small Ball), ‘Box’
(Box) or ¢ (empty). The second column of the table lists the observed actions for
each state, and the third column lists the learned policy. Notice that, once again,
the robot was able to reconstruct an optimal policy, by choosing one of the
demonstrated actions in those states where different actions were possible.

In another experiment, we provided the robot with an incomplete and
inaccurate demonstration. In particular, the action at state (¢, Ball) was never
demonstrated and the action at state (Ball, Ball) was wrong. Table 5.4 shows
the demonstrated and learned policies. Notice that in this particular case the
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Table 5.4 Experiment 1: Error free demonstration (demonstrated and learned
policies). Experiment 2: Inaccurate, incomplete demonstration
(demonstrated and learned policies). The boxed elements in column

Demo?2 correspond to the incomplete and inaccurate actions

State Demol Learned Demo2 Learned
(¢, Ball) TcR TcR = TcR
(¢, Box) GrR GrR GrR GrR
(¢, ball) TpR TpR TpR TpR
(Ball, ¢) TcL TcL TcL TcL
(Ball, Ball) TcL, TcR TcL, TcR TcL
(Ball, Box) TcL, GrR GrR TcL TcL
(Ball, ball) TcL TcL TcL TcL
(Box, ¢) GrL GrL GrL GrL
(Box, Ball) GrL, TcR GrL GrL GrL
(Box, Box) GrL, GrR GrR GrL GrL
(Box, ball) GrL GrL GrL GrL
(ball, ¢) TpL TpL TpL TpL
(ball, ball) TpL, TcR TpL TpL TpL
(ball, Box) TpL, GrR GrR TpL TpL
(ball, ball) TpL TpL TpL TpL

robot was able to recover the correct policy, even with an incomplete and
inaccurate demonstration. Figure 5.15 illustrates the execution of the optimal
learned policy for the initial state (Box, ball).®

Figure 5.15

Execution of the learned policy in state ( Box, ball)

® For videos showing additional experiences see http://vislab.isr.ist.utl.pt/baltazar/demos;.
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Figure 5.15 Continued
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Figure 5.16 Percentage of wrong actions in the learned policy as the action
recognition errors increase

To assess the sensitivity of the imitation learning module to the action
recognition errors, we tested the learning algorithm for different error recog-
nition rates. For each error rate, we ran 100 trials. Each trial consists of 45
state—action pairs, corresponding to three optimal policies. The obtained
results are depicted in Figure 5.16.

As expected, the error in the learned policy increases with the increase in
the number of wrongly interpreted actions. Notice, however, that for small
error rates (<15%) the robot is still able to recover the demonstrated policy
with an error of only around 1%. In particular, if we consider the error rates of
the implemented action recognition method (between 10% and 15%), we
observe that the optimal policy is accurately recovered. This allows us to
conclude that action recognition using the affordances is sufficiently precise to
ensure the recovery of the demonstrated policy.

The accuracy of the recognition varied depending on the performed action
on the demonstrator and on the speed of execution, but for all actions
the recognition was successful with an error rate between 10% and 15%. The
errors in action recognition are justified by the different viewpoints during the
learning of the affordances and during the demonstration. During learning,
the robot observes the consequence of its own actions, while during recognition
the scene is observed from an external point-of-view. In terms of the image, this
difference in viewpoints translates in differences on the observed trajectories
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and velocities, leading to some occasional misrecognition. Refer to Reference
28 for a more detailed discussion of this topic.

5.6 Conclusions

We have presented a computational model of affordances relying on BNs and,
based on it, an imitation learning framework. On one hand, the model captures
the relations between actions, object properties and the expected action out-
comes. Using well-established learning and inference algorithms, a robot can
learn these relations in a completely unsupervised way simply by interacting
with the environment. Our results show how the learned network captures
the structural dependencies between actions, object features and effects even in
the presence of the perceptual and motor uncertainty inherent to real-world
scenarios.

On the other hand, affordances provide the basic skills required for social
interaction. The proposed imitation framework learns reward functions from
task demonstrations. It uses the inference capabilities of the learned affordance
network to recognize the demonstrated actions, predict the potential effects
and plan accordingly. In this sense, imitation is not limited to mimicking the
detailed human actions. Instead, it is used in a goal-directed manner (emula-
tion), since the robot may choose a very different action when compared to
that of the demonstrator, as long as its experience indicates that the desired
effect can be met.

The model has a number of interesting properties that are worth pointing
out: not only does it bridge the gap between sensory-motor loops and higher
cognitive levels in humanoid robots but also allows us to possibly gain some
insight concerning human cognition. One interesting remark is that, by using this
approach, objects are represented by taking into account not only their visual
attributes (e.g., shape) but also their ‘behavior’ when subject to actions. In other
words, ‘objecthood’ is defined as a consequence of the robot’s own actions (and
embodiment) and the corresponding action outcomes. This concept of action-
based object categorization is fundamental for planning but it is also relevant
from the point of view of human perception and behavior.

A second point to notice in our affordance model is that the same basic
knowledge and inference methods are used both for action selection and action
recognition. In a sense, our model displays a ‘mirror’ structure as suggested by
the existence of the so-called mirror neurons in the premotor cortex of macaque
monkeys. The same neuronal structures simultaneously support action gen-
eration and recognition.

Finally, we have illustrated how the ability of the learned model to predict
the effects of actions and recognize actions can be used to play simple inter-
action games and to implement learning by imitation in a robot.

We believe that modeling the interplay between actions, objects and
actions outcomes is a powerful approach not only to develop goal-oriented
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behavior, action recognition, planning and execution in humanoid robots but
also to shed some light into some of the fundamental mechanisms associated
with human learning and cognition.
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