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Abstract-Recently, a novel framework has been proposed for 
intrinsically motivated reinforcement learning (IMRL) in which 
a learning agent is driven by rewards that include not only 
information about what the agent must accomplish in order to 
"survive", but also additional reward signals that drive the agent 
to engage in other activities, such as playing or exploring, because 
they are ''inherently enjoyable". In this paper, we investigate the 
impact of intrinsic motivation mechanisms in multiagent learning 
scenarios, by considering how such motivational system may 
drive an agent to engage in behaviors that are "socially aware". 
We show that, using this approach, it is possible for agents to 
learn individually to acquire socially aware behaviors that trade­
otT individual well-fare for social acknowledgment, leading to a 
more successful performance of the population as a whole. 

I. INTRODUCTION 

One fundamental skill expected of an intelligent agent is 
that it should be able to autonomously learn how to perform 
new tasks and behave in situations never experienced before. 
And, while the discipline of machine learning proposes a range 
of possible answers to the question of "how" to learn, it does 
not provide any satisfying answer to ''why'' an agent should 
learn. Endowing an artificial system such as a robot with a 
self-motivated, open-ended system for learning increasingly 
complex behaviors is therefore a fundamental challenge in 
artificial intelligence and robotics. 

Intrinsic motivation is a term coined in the psychology liter­
ature, and refers to the "forces" that drive organisms to engage 
in certain activities because they are inherently enjoyable, such 
as playing, exploring, etc. [1]. Several parallels have been 
drawn between intrinsic motivation systems in the psychology 
literature and some active learning and experimental design 
techniques from machine learning [2]-[4]. Also, several in­
trinsic motivation systems have been proposed for artificial 
systems in areas such as developmental robotics. Examples 
include the hierarchical acquisition of skills using intrinsically 
motivated reinforcement learning [5]-[7], the acquisition of 
a visual-attention system from motivation variables [8], and 
others [3], [4], [9], [10]. 

Recently, a novel framework has been proposed for intrinsi­
cally motivated reinforcement learning (IMRL) [11], [12]. This 
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framework proposes an evolutionary interpretation of intrinsic 
rewards, according to which the latter are the result of an (evo­
lutionary) optimization process that maximizes the expected 

fitness of an agent given some distribution of environments 
of interest. Within this framework, an agent's reward signals 
include information about what the agent must accomplish in 
order to "survive"-the so-called extrinsic reward signals-but 
also additional reward signals that drive the agent to engage 
in other activities such as playing or exploring-the intrinsic 

reward signals. How each reward signal contributes to the 
agent's overall reward is "hard-wired" and depends on the 
range of environments that the agent is expected to interact 
with and on how "fitness" is measured. The optimization 
of such contributions can be interpreted as the outcome of 
an evolutionary process that conditions a particular agent 
interacting with and learning in certain environments to weight 
different reward signals in a way that is best for this agent and 
these environments. 

From a more computational perspective, it was shown 
that optimized rewards obtained using this approach include 
information that allows agents to overcome limitations such 
as perceptual aliasing [13]. Also, as argued in [12], [13], the 
mechanism of reward optimization is fundamentally different 
from reward-shaping [14], as the latter approach does not 
modify the optimal policy for a certain environment. In 
environments where the limitations of an agent lead to optimal 
policies which can perform poorly, reward shaping cannot be 
expected to allow the agent to overcome such limitations. The 
use of intrinsic reward signals, on the other hand, can lead 
to a tremendous boost in performance, since it actually does 
modify the optimal policy. The IMRL framework provides 
a computationally sound approach to the implementation of 
intrinsic motivation systems in learning agents. 

In this paper, we explore the impact of such motivational 
systems in multiagent scenarios. While most aforementioned 
works focus on single-agent scenarios, in which the motiva­
tional system drives a single agent to engage in behaviors that 
are not directly "survival" -related, in this paper we consider 
how these same systems may drive an agent to engage in 
behaviors that are "socially aware", in a sense to be made 
clear. Specifically, we adopt the IMRL framework of [11], [12] 
and show that, using this approach, it is possible for agents 
that learn individually to acquire socially aware behaviors 
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that trade-off individual well-fare for social acknowledgment, 
leading to more successful populations. In a sense, we show 
that the IMRL framework can be used to endow agents with 
social motivation that drives them to learn such behaviors. 

Given the evolutionary interpretation proposed for the IMRL 
framework that we adopt [12] and the social nature of the 
scenarios we consider, there is a close relation between our 
work and evolutionary game theory [15]. In its simplest 
form, evolutionary game theory analyzes the dynamics of 
a population when invaded by a small group of mutants. 
The interaction between individuals (mutant or non-mutant) is 
modeled as a strategic game in which the payoffs measure the 
fitness of the individuals after the interaction. Game theoretic 
notions are then used to analyze the dynamics of the fitness of 
the population and predict whether the mutants will eventually 
extinguish or not [15]. In our setting, the overall reward 
obtained after the reward optimization process can be seen 
as a evolutionary stable equilibrium in a sibling population, 
as discussed in [16].1 

The paper is organized as follows. Section II discusses the 
general reinforcement learning setting and the IMRL approach 
from [12]. Section ill presents the application of IMRL frame­
work in multiagent scenarios and discusses possible reward 
signals that can be considered as intrinsic rewards. Section IV 
illustrates the application of this framework to multiagent 
systems and discusses some of the socially-aware behaviors 
observed. Section V provides some conclusions discussing 
some possible improvements and future work 

II. BACKGROUND 

In this section we introduce the fundamental RL concepts 
and review the IMRL framework used in this paper [12]. 

A. Reinforcement Learning 

Reinforcement learning (RL) addresses the general problem 
of an agent faced with a sequential decision problem [17]. By 
a process of trial-and-error, the agent must learn a "good" 
mapping that assigns perceptions to actions. Such mapping 
determines how the agent acts in each possible situation and 
is commonly known as a policy. 

We model the sequential decision problem faced by an agent 
as a partially observable Markov decision process (POMDPs), 
denoted by a tuple M = (S, A, Z, P, 0, r) . At every step t, 
the state can be in any of a finite set S of possible states. 
Depending on its current perception Zt of the state, the agent 
chooses an action at from a finite set of possible actions, A, 
and the environment transitions from state St to state St+l 
with probability P(St+1 I St, at) . The agent receives a reward 
r(st, at) and makes a new observation Zt+1 from a set of 
possible observations, Z, with probability O(Zt+1 I St+l, at) , 
and the process repeats. The goal of the agent is to choose its 
actions so as to gather as much reward as possible, discounted 

1 Due to space limitations, a detailed discussion of the relation between 
evolutionary game theory and our approach is out of the scope of this paper. 

by a positive discount factor 'Y < 1. Formally, this corresponds 
to maximizing the value 

v = lE [� 'Y
t
r(St, at)] . (1) 

The reward function r implicitly encodes a task, which the 
agent must complete by finding a policy 7l'* : Z -+ A that 
maximizes the value in (1). In typical RL scenarios, it is 
assumed that observations Zt correspond to the actual states 
St of the agent/environment [17]. When this is the case, it is 
possible to find a policy 7l'* : Z -+ A maximizing the value in 
(1). Such optimal policy can be derived from the optimal Q­
function, Q*, that determines how good (in the long-run) each 
action a E A is, in each state S E S, if the agent performs 
optimally afterwards. In other words, 

7l'*(S) = argmaxQ*(s, a) . 
aEA 

This function can be learned using any of a number of 
methods [17]. In this paper, our learning agents run the Dyna­
Qlprioritized sweeping algorithm [18], where the observations 
of the agent are treated as states. In Dyna-Q, the agent uses 
its interaction with the environment to construct a model .AI! 
of the MDP M and uses this model to compute Q*. 

B. Intrinsically Motivated RL 

In the IMRL framework, learning agents are evaluated 
according to their expected fitness throughout their lifetime. 
The learning agent is expected to interact with one among a 
set £ of possible environments, and optimize its policy with 
respect to one among a set 'R of possible rewards. Depending 
on the specific environment and reward, the agent produces a 
history h and its fitness F(h) is evaluated with respect to this 
history by some given fitness function F. An optimal reward 
function r* E 'R is such that the expected fitness of the agent 
with respect to a distribution over possible environments is 
maximized. 

In this paper, we consider 'R as the set of all rewards of the 
form 

(2) 

where each rPi is referred as a reward signal. The weights 
(}i determine the contribution of these reward signals to the 
overall reward that the agent will learn to maximize throughout 
its lifetime. We also admit the reward signals rPi to be 
history-dependent (and thus, non-Markovian). As in [12], this 
dependence is not considered by the learning algorithm, but 
does impact the corresponding optimal policy. 

We refer to a fitness-based reward signal as a reward-signal 
q7 that explicitly rewards fitness-maximizing states [12]. For 
ease of exposition, we henceforth refer to such reward signal as 
the extrinsic reward, and the other reward signals as intrinsic 

rewards, although these designations may not correspond to 
any such quantities found in biological systems. We denote the 
weight-vector corresponding to the optimal reward function as 
(J*. This vector can be computed in any of a number of ways 



[12], [19]. The particular method considered is not important 
for our purposes, so we adopt a simple approach in which the 
weights are optimized by a brute-force search in the weight­
space. 

III. SOCIALLy-MoTIVATED LEARNING AGENTS 

In this section we apply the IMRL approach to multiagent 
scenarios. In particular, we discuss two (social) reward signals 
to be used within the IMRL framework and how these relate to 
specific social interactions studied in the specialized literature. 

A. Fitness in Multiagent Scenarios 

We consider a scenario where N agents interact in a 
common environment, among a set of £ possible environ­
ments. The evolution of the state of the environment generally 
depends on the actions of all agents, and each agent k, 
k = 1, ... , N, has access to a local observation function Ok 
that maps the state of the environment into a local observation 
Zk. Each agent must learn to optimize its individual policy 'Irk 
with respect to an individual reward function Tk, chosen among 
a set n of possible reward functions that take the general form 
described in (2). Each agent k, k = 1, ... , N, is evaluated 
according to its expected fitness Fk, and the overall population 
is evaluated according to their summed fitness, 

N 

F(h) = L Fk(hk) , 
k=i 

where we denote by hk the history of agent k and by h the 
joint history of all N agents, i. e. , h = (hi"", hN) .  For 
simplicity, we focus mostly on homogeneous scenarios, where 
all agents share similar reward functions and observation 
functions. 

We note that our agents are individual learners in the sense 
of [20]. Therefore, they do not explicitly reason about other 
agents or their course of action. It follows that, whatever 
"collaborative" behavior emerges from the interaction among 
the agents, it does not result from any explicit social consid­
erations that the agents may have on the well-fare of others. 

B. Social Reward Signals and Social Motivation 

To develop reward signals that take into consideration social 
interactions among agents, we consider the notion of affiliation 

from Domer's PSI-theory [21], later adapted to the PSI agent 
architecture [22]. PSI agents have an urge to affiliate with other 
agents by sending and receiving legitimacy signals, also known 
as l-signals, that reward successful interactions. Domer further 
defines other social signals that facilitate social interactions: 
anti-l-signals that punish unsuccessful social interactions, and 
internal l-signals that reward socially-acceptable behaviors 
[21], [22]. 

In our IMRL framework, we use reward signals that can be 
interpreted as computational counterparts to the several social 
signals discussed above, and show that these signals lead to the 
emergence of "socially aware" behaviors in social contexts. As 
will soon become apparent, the use of these signals as intrinsic 
rewards improves the overall fitness of the agent popUlation 

without significantly impacting the individual fitness of each 
agent within that group. 

We propose two possible social reward signals. One can 
be interpreted as a computational counterpart to the internal 
l-signals, and is hereby denoted by ¢Ji. The second can be 
interpreted as a computational counterpart to the (external) l­
signals, and is hereby denoted as ¢Je. These reward signals 
can be interpreted as representing how satisfied the affiliation 
need of an agent is. In our IMRL framework, the individual 
rewards Tk are thus given by 

Tk(S, a) = oF ¢JF + (Je¢Je + (Ji¢Ji, 
where, as seen before, ¢JF denotes the fitness-based reward 
signal, or extrinsic reward. The weights (JF, (Je and (Ji are 
scalar values between 0 and 1 that indicate the contribution of 
each reward signal, ¢F, ¢Je and ¢Ji, to the overall reward that 
the agents will learn to maximize throughout their lifetime. 
For example, a weight vector 6 £ [(JF, (Je, (JiJ = [1,0, OJ corre­
sponds to an agent that values only the extrinsic reward signal, 
¢F, while completely ignoring the social reward signals. 

In accordance with the IMRL framework [12], the weight 
vector 6 are optimized for all agents to maximize the average 
fitness F of the population. The optimal weight vector 6* 
relates to the way that natural agents are phylogenetically 
predisposed to socially behave within a particular population. 
For example, some species may favor fair resource sharing 
while others may live within a highly hierarchical social 
structure that favors an unbalanced resource distribution within 
its members. Each weight configuration yields different de­
grees of fitness for the particular popUlation and range of 
environments in which the agents co-exist. 

C. Social Reward Signals in Limited Resource Scenarios 

To apply the ideas discussed so far in a concrete multi­
agent scenario, we resort to an adaptation of the foraging 
environments described in [12]. Our purpose is to illustrate 
the emergence of socially-aware behaviors and investigate the 
impact that such behaviors can have in the fitness of the overall 
population, comparing it with that of a popUlation of "selfish" 
agents. For simplicity of presentation and analysis, we focus 
on 2-agent scenarios. 

In our scenarios, the agents have limited food resources 
available in the environment, and the legitimacy signals are 
used to provide "social feedback" on their feeding behavior. 
Specifically, we assume that the agents know who was the last 
agent to consume a food resource from the environment, and 
are able to detect another agent when they are co-located in 
the environment. In all our experiments, we consider 

Fk(hk) = L ¢Jr, 
hk 

i. e. ,  the fitness of agent k corresponds to the total extrinsic 
reward received by agent k throughout its lifetime. We also 
define the following events, used in the calculation of the 
intrinsic reward signals: 



• LTEk(t) denotes the event that, at step t, agent k was the 
last agent to consume a food resource; 

• FOODk(t) denotes the event that, at step t, agent k is 
located near a food resource; 

• FULLk(t) denotes the event that, at step t, agent k is in 
a fully satiated state; 

• HUNGRYk(t) denotes the event that, at time step t, agent 
k is in a hungry state; We note that each agent cannot 
be hungry and full at the same time, i. e. , 'v'tFULLk(t) t 
HUNGRYk(t), but they can be in an intermediate satisfied 

state, when they are neither full or hungry; 
• EATk(t) denotes the event that, at step t, agent k took 

action "Eat" (i. e. , tried to consume a food resource); 
• OTHER_EATk(t) denotes the event that, at step t, the 

agents are co-located and the other agent took action 
"Eat". 

All above events can be perceived by agent k from its 
observation Zk at time t. Using the above events, we can now 
define the reward signals r/Je and r/Ji and discuss their relation 
with internal and external l-signals.2 

In our scenario, consuming food is the only behavior that 
directly contributes to the fitness of the population, while being 
hungry decreases the fitness. Therefore, 

r/J{(t) = II [FULLk(t)]-0.15 ·lI [HUNGRYk(t)] 

where II [e] denotes the indicator function for event e. More­
over, r/J� and r/J� reward and punish the feeding behavior of 
agent k depending on whether it is or not socially aware, i. e. , if 
it takes into consideration whether it was the last agent to eat. 
Formally, we define the external social reward signal as 

r/J�(t) = II [LTEk(t)]·lI [FOODk(t)]·lI [OTHER_EATk(t)] 
. (lI [-,EATk(t)]-lI [EATk(t)]), 

where -,EATk denotes the event that agent k did not take the 
action "Eat"; and the internal social reward signal as 

r/J�(t) = II [LTEk(t)]·lI [FOODk(t)] 
. (lI [-'EATk(t)]-lI [EATk(t)]). 

Informally, r/J� rewards agent k for allowing the other agent 
to eat when k was the last to eat, and punishes agent k for 
eating in the presence of the other agent when k was the last 
to eat. Conversely, r/J� rewards agent k for not eating when it 
was the last to eat, and punishes agent k when it eats having 
been the last to eat. 

Let us now consider the relation between the above reward 
signals and the legitimacy-signals from the PSI-theory: 

• I-signals and anti-I-signals somehow encode the degree 
of acceptance of the conduct of an individual by other 
members of its social group [22, p. 128]. In our setting, 

20f course that we provide only one possible interpretation of these 
quantities in the context of our very simple scenario, and do not claim this 
interpretation to be universal or even biologically plausible. However, as will 
become apparent, this interpretation facilitates the discussion of the observed 
results. Depending on the social environments being considered, other features 
may be defined. 

the reward signal r/J� takes a positive value whenever 
agent k has the possibility to consume a food resource but 
chooses not to because it was the last to eat, thus giving 
the other agent the opportunity to be satiated. Since this 
corresponds to a sensible behavior, the positive value of 
r/J� can be seen as a signal of acceptance by the other 
agent. A similar argument can be drawn with respect to 
the negative values of r/J�. 

• internal I-signals measure how much an agent's actions 
are in accordance of its own internal standards [22, 
p. 128]. In our setting, the reward signal takes a positive 
value whenever agent k has the possibility to consume a 
food but decides not to because it was the last to eat (in­
dependently of the presence or absence of other agents). 
Because our scenarios deal with food sharing, this reward 
signal somehow encodes the degree of satisfaction that 
agent k gets for engaging in such altruistic behavior. 
Socially-aware agents feel intrinsically rewarded when 
they feel they engage in a behavior for the benefit of 
other members of its social group [23, p. 281]. Moreover, 
altruistic behaviors may carry an initial cost that is only 
compensated after a certain time period [23, p. 281]. In 
our setting, r/J� rewards agent k for altruistic behavior, 
even if this implies smaller individual fitness. Similarly, 
it punishes selfish behaviors, even if the agent was not 
directly competing with another agent for a food resource. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

In our experiments, two learning agents co-exist in the 
environment depicted in Fig. 1. Each agent has available 5 
possible actions, {N, S, E, W, Eat}. The four direction actions 
move the agent deterministically to the adjacent cell in the 
corresponding direction; the action Eat consumes a food 
resource if one is present in the agent's location, and does 
nothing otherwise. At each time step, the agent observes its 
current position, its satiation status (i. e. , whether it is HUNGRY, 
SATISFIED or FULL), and whether food or another agent are 
present at the agent's current location. It also knows whether 
it was the last one to eat. Whenever an agent consumes a 
food resource, it becomes FULL for one time-step, after which 
it returns to the SATISFIED state. If it does not consume any 
resources for 30 time-steps, it becomes HUNGRY. As already 
seen, the extrinsic reward r/J:F of each agent k at time t 
depends only on the hunger-status of the agent, and is given 
by f{(t) = II [FULLk(t)]-0.15·lI [HUNGRYk(t)]. 

We ran three different experiments, each consisting of a 
variation of the general problem defined above. These experi­
ments differ in the amount of food resources available, the start 
position of the agents (see Fig. 1 for specific cell positions) 
and particular distinctions in the process of feeding. 

• Single-food scenario: In this scenario there is always one 
food resource available at (3 : 3). One of the agents 
departs from position (1 : 3) while the other departs 
from (8 : 3). Whenever one agent consumes the food 



(I :2) (3:2) (6:2) (8:2) 

(1:1) (2:1) (3:1) (4:1) (5:1) (6:1) (7:1) (8:1) 

Figure 1. The foraging environment used in the experiments. Each square 
marked by (x : y) coordinates represents a possible location for the agent. 

resource it is repositioned in (1 : 3), while the other 
agent is repositioned at (8 : 3). The placement of the 
agents gives an advantage to the last eating agent, as 
it can reach the food source faster and allow the other 
to starve. Whenever the two agents try to consume the 
resource simultaneously, neither of them succeeds. 

• Equal-resource scenario: In this scenario there are always 
food resources available at (3 : 3) and (6 : 3). As before, 
one of the agents departs from (1 : 3) while the other 
departs from (8 : 3). Also, whenever one agent consumes 
a resource, it is repositioned in (1 : 3) and the other agent 
is repositioned at (8 : 3). Whenever the two agents try 
to consume the same resource simultaneously, neither of 
them succeeds. However, the fact that two food resources 
are available allows both agents to eat simultaneously. 

• Stronger-agent scenario: In this scenario there is always 
one food resource available at (3 : 3). Both agents depart 
from position (8 : 3). Whenever one agent consumes the 
food resource they are both repositioned in (8 : 3). In 
this scenario, however, Agent 1 is stronger than Agent 2 
and whenever the two agents try to consume the resource 
simultaneously, only Agent 1 succeeds. This gives an 
advantage to Agent 1, as it can always overpower the 
other and allow the other to starve. 

From each agent's perspective, the environments are non­
Markovian, since there are elements of the state that the agents 
cannot observe (e. g. , the position of the other agent). In our 
Dyna-Q implementation, we use a learning rate a = 0.3 
and 'Y = 0.9. The agents follow an c-greedy policy with a 
decaying exploration rate ct = >..t, with >.. = 1.00005. To 
optimize the reward function, we adopt an adaptive sampling 
approach similar to the one in [12]. The optimization process 
determines, for each scenario, the optimal weight vector ()* 
that maximizes the overall fitness of the population. 

B. Results 

We simulated our agents for 100 000 learning steps and 
present in Table I the overall fitness obtained in each of 
the test scenarios. The results correspond to averages of 100 
independent Monte-Carlo trials. 

For each scenario, we compare the fitness of the popUlation 
consisting of two agents with optimized weight vectors with 
that of a population consisting of two standard Dyna-Q agents 
that learn using only the extrinsic reward. As can be seen from 
the results in Table I, socially motivated agents attain a greater 
fitness than the popUlation using only the extrinsic reward 

Table I 
POPULATION FITNESS FOR EACH SCENARIO. THE FIRST COLUMN 

INDICATES THE OPTIMAL WEIGHT VECTOR FOR EACH ENVIRONMENT. THE 

COLUMN MARKED "OPTIMAL" CORRESPONDS TO THE POPULATION WITH 

THE OPTIMIZED WEIGHT VECTOR; THE COLUMN MARKED "EXTRINSIC" 

CORRESPONDS TO THE STANDARD DVNA-Q AGENTS (0 = [1,0, OJ). 

Scenario 0" = [o,F,oe,Oi] Optimal Extrinsic 

Single-food 0" = [0.33,0.33, 0.33] 2 355.8 -4 029.9 
Equal-resource 0" = [0.20,0.80,0.00] 13 969.9 13 629.1 
Stronger-agent 0" = [0.14,0.57,0.29] 8 019.2 441.7 

during learning. These agents are typically "selfish" which, 
combined with the structure of the environments, typically 
leads one of the agents to starvation. 

In the Single-food scenario, the optimal weight vector 
fairly distributes the importance of the three reward signals 
considered. This indicates that the proposed reward signals, 
inspired by social legitimacy-signals, do provide a relevant 
trade-off between the fitness-based signal and the social reward 
signals. Each agent takes into consideration not only the 
extrinsic reward from being satiated, but are also sensible to 
the social "reinforcement" received for allowing food sharing. 
If this was not the case, then the last agent to eat could easily 
improve its individual fitness by starving the other agent. This 
can be seen from the results achieved using only the extrinsic 
reward, corresponding to the last column of Table I. 

The Equal-resource scenario provides insights on situations 
where food resources are always abundant. In this case, there 
needs to be no food sharing or competition over the available 
resources. As a consequence, the optimal weight vector for this 
scenario completely ignores </Jl while giving more attention to 
the extrinsic reward provided by eating food. As expected, the 
results in terms of fitness achieved by either the optimal and 
the extrinsic weight sets are very similar. This is due to the 
fact that, by having unlimited food resources available to both 
agents, they don't have to signal each other for acceptable 
feeding behaviors. However, this does not mean that they 
should ignore all intrinsic motivation coming from the social 
features. For example, due to the placement policy after eating, 
in the beginning the agents might learn to obtain reward by 
eating the food resource at (3 : 3) while ignoring the fact that 
there is also a resource available at (6 : 3). In such cases, as 
the optimal weight set indicates, </Jk plays an important role 
by reprehending selfish behaviors during competition. 

Finally, in the stronger-agent scenario, our objective was 
to see whether the social behavior arises out of a need to 
cooperate with each other to avoid starvation if one agent gets 
to be the last to learn. In this scenario, by letting both agents 
depart from the same position and having one agent always 
overpower the other, Agent 1 strictly has no need to cooperate 
with Agent 2. However, even in this situation, we observe that 
socially-aware behavior emerges, leading to resource sharing. 
This can also be seen from the optimal weight vector for this 
scenario, which places significant weight in both </Je and </Ji. 

We conclude this section by illustrating in Fig. 2 the 
evolution of the fitness of the popUlation in each of the 
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Figure 2. Evolution of the fitness of the population in each of the three test scenarios. Results are averages over 100 independent Monte-Carlo trials. "Optimal 
vs Optimal" corresponds to populations of two agents with the optimal weight vectors. "Extrinsic vs Extrinsic" corresponds to populations of two agents with 
the weight vector () = [1,0,0]. 

different scenarios. 

V. CONCLUSIONS 

In this paper we investigated the impact that a social 
motivation system can have in the emergence of socially aware 
behaviors in a population of learning agents. We adapted the 
framework for intrinsically motivated reinforcement learning 
in [12] and explored how simple social signals inspired by the 
notion of affiliation proposed in the pSI-theory. Our results 
show that, indeed, our socially motivated agents perform as 
a whole much better than "selfish" agents, with little impact 
in their individual fitness. Our results show that, even in the 
presence of dominating agents, i. e. , agents who do not require 
socially aware behavior to maximize their individual fitness, 
socially aware behaviors lead to an imprOVed population 
fitness. Finally, our results that the social motivation does not 
blindly lead to selfless behavior: in scenarios where resources 
abound, our agents learn to disregard the needs of the others, 
since they are not affected by the agent's behavior. 

While the purpose of this work is to investigate the use 
of intrinsically motivated reinforcement learning in multia­
gent systems and the emergence of social behavior in such 
multiagent settings, we were not particularly concerned with 
providing a detailed social signaling mechanism. It would 
be interesting to investigate the emergence of richer social 
behaviors using the same framework, by possibly considering 
a richer reward space. It may also be interesting to further 
explore the relation between our work and evolutionary game 
theory, exploring the relation between this discipline and 
reinforcement learning [24]. 
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