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Adaptive Indirect Control through Communication
in Collaborative Human-Robot Interaction
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Abstract— This paper addresses the problem of human-robot
collaboration in scenarios where a robot assists a human by
executing a complex motion involving the manipulation of an
object. We focus on tasks in which success in the task depends
on reaching a target pose that is controlled by the human.
We contribute a reinforcement learning-based approach that
allows the robot to reason about its own ability to successfully
complete the task given the current target pose and indirectly
adjust that pose by prompting the human user. Our approach
allows the robot both to trade-off the benefits of adjusting the
target position against the cost of bothering the human user
while, at the same time, adapting to each user’s responses. Our
approach was tested in a real-world human-robot collaboration
scenario involving the Baxter robot.

I. INTRODUCTION

In this paper we consider the human-robot collaboration
problem, where a human and a robot jointly execute a pre-
defined task. We focus on scenarios where the robot assists
the human by executing a complex motion involving the
manipulation of an object, which is successfully completed
only upon reaching a target pose that is controlled by the
human user. Examples of tasks that fit these characteristics
include the joint preparation of a drink [1] or helping a
human user dressing a piece of clothing [2], [3], [4]. In the
former, the robot executes a pouring motion towards a target
(cup), the pose of which is controlled by the human user.
In the latter, the robot performs a dressing motion involving
the manipulation of a piece of clothing, while the human
controls the target pose by moving his/her body.

However, the ability of the robot to successfully execute
the desired motion critically depends on the target pose.
Certain poses will lie outside of the robot’s reach; others
may impose trajectories that are unsafe for the robot to
execute or altogether impossible, given the configuration of
the environment and obstacles that may exist. Or, in scenarios
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where the motion of the robot is learned from demonstration,
the target may lie in a region where the robot is unable to
properly generalize. Successfully completing the task will
require the target to move to a more convenient pose.

The topic of cooperative object manipulation has been
extensively investigated in the literature of human-robot
interaction. Typical approaches consider that the human user
leads the interaction by guiding the execution of the task,
whereas the robot is expected to adapt its execution to that of
the human. In this interaction paradigm, several approaches
rely on having the robot predicting the human motion and
intentions, and act accordingly [5], [6], [7], [8].

Recent years have seen a shift in this paradigm, with new
approaches starting to place more responsibility and initiative
on the side of the robot. An example of this is the recent
effort on improving the legibility of the trajectories executed
by the robot, in order to make it easier for human users to
interpret the intentions of the robot [9], [10], [1].

More recent approaches to address robot limitations take
inspiration from human-human interactions, where humans
typically enroll the assistance from other humans to ease
their own execution. For example, when assisting someone to
dress a jacket, we will naturally ask the other to adjust his/her
position so that we may more easily assist him/her. Such
approaches rely on the typical compliance of human users
to requests from others. For example, Rosenthal, Biswas
and Veloso pioneered the concept of symbiotic autonomy,
where a robot explicitly considers its own limitations and
the existence of humans in the environment, and plans to
enroll human assistance in the execution of its task [11]. In
another work involving a dressing task, the robot determines
whether or not it is able to execute the desired motion given
the position of the human user [3]. When that is not the
case, the robot informs the user, asking him/her to move
to a more convenient position. In a more recent work, the
robot trades off the benefits arising from enrolling the human
assistance versus the cost of disturbing the user with a request
for positioning [4].

In this paper, we follow on this line of work and propose
a novel approach that allows a robot to proactively voice
assistance requests to the human teammate. Instead of a
trade-off between direct task execution and a request to
reposition, we propose a reinforcement learning approach in
which the robot effectively engages in a process of indirect
control over the target pose, voicing successive requests that
direct the user towards a pose in which task execution can be
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Fig. 1. The problem of indirectly adjusting the target pose depicted from a
classical control perspective.

of its repositioning. However, this is done implicitly as part
of the indirect control process. Additionally, by observing the
response of human users to the robot’s requests, our approach
effectively adjusts its actions so as to adapt to possible
limitations of the user. This feature is particularly useful
when dealing with users with disabilities or in cluttered
scenarios, where the user may not be able to comply to all
the requests from the robot.

We model the robot’s decision process as a Markov
Decision Process [12] and use reinforcement learning to learn
the best indirect control policy. We show that our approach is
able to successfully direct human users to more convenient
poses while trading off the benefits of human assistance with
the cost of disturbing the user. We test our approach in a
real-world collaboration scenario involving the Baxter robot,
where the latter assists a human user to put on a backpack.

II. PROBLEM STATEMENT

As discussed in the previous section, we are interested
in problems where the robot must execute some complex
motion with respect to a target pose. The target pose is
controlled by a human user and the robot can indirectly con-
trol the target’s pose by communicating with the human—
essentially, by voicing specific requests. The human may or
may not comply with the robot’s requests, and there is a cost
associated with each request. Additionally, there is a cost
associated with the execution of each motion, which greatly
depends on whether the motion succeeds or not. The goal of
the robot is to determine which command to execute at each
time, so as to minimize the incurred cost and maximize the
probability of executing a successful motion.

We can look at this class of problems from a traditional
control perspective, as illustrated in Fig. 1. Roughly speak-
ing, the robot internally assesses whether the current pose
of the target corresponds to the “ideal pose” for execution.
Depending on how much that pose deviates from the ideal
pose, the robot will determine which control command to
issue in order to balance the cost associated with each request
and the cost associated with moving to a difficult pose.

From a control perspective, there are several challenges
involved in the problem described above. First of all, there
is a significant uncertainty/variability regarding the user’s
response to the robot’s commands. Although that uncertainty
may be captured probabilistically, the robot should take it
into consideration when selecting the commands to issue.

Secondly, even ignoring the variability in the user’s response,
there is no a priori model on how the user responds.

To address the first challenge, we propose the use of a
decision-theoretic model, a Markov decision process (MDP),
to represent the control problem summarized in Fig. 1.
To address the second challenge, we propose the use of
a reinforcement learning approach. We describe the MDP
model in this section and postpone the description of the
reinforcement learning approach until the next section.

An MDP is a tuple (X, A, P,c,7), where:

o X is the set of states. In the class of problems that we
focus on, the state will typically contain information
regarding the target pose for the task at hand.

« A is the action repertoire for the robot. In our case, we
can write A = Acomm U Acxec, Where Acomm 1S the
set of the communication actions (the requests voiced
by the robot) and Ay is the set of execution actions,
corresponding to the different motions that the robot can
perform.

o P represents the transition probability function. If X (¢)
denotes the state of the system at time-step ¢,

Ply|z,a)=P[X(t+1)=y| X(t)=2,A(t) =aqa].

In other words, the transition probabilities P(y | z,a)
provide a model of how the state changes depending on
the actions of the robot. In our goal tasks, the transition
probabilities encode the response of the user to the
robot’s requests.

e ¢c: X x A— R is the cost, which in our case encodes
both the cost incurred by communicating with the user
and the execution cost.

o Finally, v is a discount factor, indicating that rewards
arriving earlier are preferable to rewards arriving later.

Solving the MDP consists in finding an optimal policy 7*,
i.e., a mapping from states to actions which ensures that the
robot, if selecting the actions as prescribed by 7*, incurs in
as little cost as possible. In particular, the optimal policy 7*
is such that

7" (z) = argmin E, Z’ytc(X(t),w(X(t))) | X(0) ==z|,
g t=0

for all x € X. Such policy can be found from the optimal
Q-function, which can be defined recursively for every state
and action pair (z,a) € X x A as

Q*(x,a) = c(x,a) +v Y _ Py | x,a) min Q7 (y, a).
yeX

The function Q* can be computed using dynamic program-
ming, if the MDP model is fully known, or via reinforcement
learning, for example using the ()-learning algorithm [13].
In our specific scenario, and since the model for the human
response is unknown, we adopt the latter approach, as
described in the next section.
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Fig. 2. The 3D positions of shoulder, elbow and arm provide the target pose
for the execution of the robot’s motion.

III. REINFORCEMENT LEARNING APPROACH TO
PUTTING A BACKPACK

In this section we instantiate the indirect control problem
defined in the previous section to the specific scenario of
assisting a human to put a backpack using a 2-arm manip-
ulator (the Baxter robot). We describe how the problem is
modeled as an MDP as well as the reinforcement learning
approach adopted to tackle that MDP.

A. The MDP Model

As discussed in the previous section, we propose to model
indirect control problems using the MDP formalism. That
requires specifying the elements in the tuple (X, A, P, c,7).

a) The states.: For the task of putting on a backpack,
the motion of the robot will involve passing a strap through
the arm of the user up to the shoulder, and drop it there. The
target pose, in this case, will depend on the position of the
human—specifically the shoulder, arm and hand up which
the robot will pass the strap. We thus consider as our state-
space the 3D position of these 3 joints (see Fig. 2), where
each state x € X is thus a 9-dimensional real valued vector.

b) The actions.: As discussed in the previous section,
we consider A = Acomm U Aexecs Where Acomm is the
set of the communication actions and Aeyxe. i the set of
execution actions. In our case we have a single execution
action, EXECUTE, corresponding to the motion of putting
the strap up the user’s arm. This motion was taught to the
robot by demonstration (more on this ahead).

The communication actions correspond to the voice re-
quests that the robot will direct to the human user. In our
case, we consider a total of 5 actions which provide the
robot with the ability to indirectly control the target pose,
as intended: MOVE FORWARD, MOVE BACKWARD, MOVE
LEFT, MOVE RIGHT, RAISE RIGHT ARM. Each of these
actions has a voice command associated.

c) The cost function.: The cost function c specifies, for
each state-action pair (r,a) € X x A a scalar value that

measures the immediate utility of executing action a in state
x. We design our cost function taking into consideration
the cost-benefit trade-off involved in requesting human-
assistance. In particular, when designing the cost function
used in this task, we followed several rules of thumb which
are relevant for the type of problems considered in this paper:

o We penalize unsuccessful executions. An unsuccessful
execution corresponds to a failure in the target task,
which should be penalized.

o We reward successful executions. Conversely, a suc-
cessful execution corresponds to a task successfully
completed, which should be rewarded.

o We penalize a large number of interactions. In order to
prevent the robot from engaging in successive requests
to fine tune the target’s pose, we penalize each request
posed by the robot.

o We penalize physically demanding requests. Depending
on their individual circumstances, different human users
will find it easier or harder to oblige a request from the
robot. In those situations where it is known beforehand
that the user has certain limitations (for example, a bro-
ken arm), we penalize some requests more heavily (for
example, a request to raise the arm), to indicate that the
robot should take those limitations into consideration.

Guided by the general principles above, we use

5C"  if a = EXECUTE and failed;
clz,a) =< C  if a € Acomm;
—C' if a = EXECUTE and succeeded,

where C' is a constant adjusted empirically. Roughly speak-
ing, the cost function establishes 6 as an acceptable number
of human assistance requests. After 6 assistance requests,
even if the robot decides to execute the task and succeeds, the
total cost will be equivalent to an immediate failed attempt.
‘We note, however, that the failure or success of the EXECUTE
action are difficult to estimate from the pair (z,a) alone,
for which reason the cost ¢(z,a) is hard to specify as a
deterministic function of (x,a).

d) The transition probabilities.: Since the transition
probabilities depend on how the human user responds to the
robot’s requests, we do not have, beforehand, a reasonable
model of how the actions of the robot impact the target
pose. In fact, for most tasks fitting into the general setting
considered in this paper, it may be hard or even impossible to
define such a transition probability function beforehand. And,
while such transition function could be learned from data,
this would involve actual interactions with human users—
that we rather use to directly learn the policy for the robot.

B. Reinforcement Learning Approach

Reinforcement learning (RL) allows an agent (typically
modeled as an MDP) to learn, by trial-and-error, an optimal
mapping from the situations it encounters to the actions it has
available. During this trial-and-error, the agent must balance
between exploring untried actions and exploiting whatever
knowledge it already collected to decide what to do in each
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situation. And, depending on the initial policy, RL methods
may require a lot of experimentation/data before a reasonable
policy is obtained.

In our case, data must be obtained from interactions with
human users and is thus expensive to acquire. To make the
most of the data, we adapt the Dyna-() approach to our
scenario, breaking the learning problem in two stages [14]:

« In a first stage, we collect some data from real interac-
tions with human users. This data is used to build an
initial estimate for P and c.

o The estimate for P and c is then used in a second stage
to generate additional (simulated) data, which is used to
build an initial estimate of the optimal Q-function for
the MDP using standard ()-learning.

« Finally, the estimate for Q* is refined during additional
interactions with real users.

@-learning updates the estimate for @Q* from observed
transitions (x4, at, ¢t, T+41) using the rule

QU (z,a) = QW (2, a) + ay(z,a)(cs

Fymin QO (@, ) - QU(r,a),
where Q) is the t-th estimate and v is a step-size sequence.
However, the standard update in (1) requires a tabular
representation for QQ*. In our case, due to the continuous
nature of the state-space, this is not possible. We instead
combine Q-learning with linear function approximation: the
estimates Q(*) are represented in the form

P
QW (z,a) = > ¢i(x)0l) = ¢ ()87,
=1

where each ¢(x) is a feature vector describing the state x,
and Bflt) is a vector of parameters for action a. Using this
representation, the update in (1) becomes

0+ — 0 + oy (z,a) () (s

+ 7 min Q(t)(iﬁtﬂ, a’) — Q(t)(xa a)). @
a

Using our approach, the robot learns how to reason about
its ability to successfully complete the target task, request the
assistance of the human user and adapt to that user, as new
interaction episodes occur. At each episode, the robot faces
different intermediate and goal target poses, and successively
voices human assistance requests before trying to execute the
task. At the end of each episode, the robot either succeeds or
fails, but always incorporates this new experience by taking
into account the rewards obtained throughout the episode.

IV. EXPERIMENTAL EVALUATION

We now describe an evaluation of our proposed approach
using the Baxter robot in the backpack task. In this task,
the robot holds a backpack and assists the user to put in the
right strap. We describe our experimental setup, deployment
details and main results obtained with our approach.

Fig. 3. Kinesthetic teaching of the intended motion: the human teacher
shows the robot how to put the right strap of the backpack on a user.

A. Experimental Setup

The Baxter robot is a two-manipulator robotic platform
designed to work alongside human users. Each manipulator
has 7 degrees of freedom and an actuated end gripper that
is used to hold the backpack. To determine the position of
the human user, we use a Microsoft Kinect pointing towards
the Baxter robot, and OpenNI tracker to compute the human
joint positions (see Fig. 2).

B. Learning from Demonstration

The motion of putting the backpack was taught to the
robot using kinesthetic teaching (see Fig. 3). The robot was
provided with 23 demonstrations of the intended motion,
with the user placed in different positions in front of the
robot. For each position of the user, the Kinect provided
the target pose, consisting of the 3D position of the right
shoulder, elbow and hand. The demonstrated trajectories
were stored in joint space.

The demonstrated trajectories and the target pose were
used to build a cooperative probabilistic motion primitive
(CoProMP) [15], a parameterized distribution over the space
of trajectories. Tasks such as modulating the trajectory to
a particular goal can be achieved by standard probability
operations such as conditioning.

C. MDP Learning and Simulation

As described in the previous section, we use simulated
data to build an initial estimate of the optimal ()-function. In
order to build the simulation model, we first built estimates of
the transition probabilities P for each of the request actions
of the user. We adopt a simple dynamic model that can be
summarized in the expression

Ti41 = Tt + d(at),

where x; is the target pose at time-step ¢, a; was the request
issued by the robot at that time, and d(a;) was the observed
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displacement. We built a distribution py(- | a) as a function
of a, and adopted, as transition model,

P(y|z,a)=paly —z|a).

Specifically, for each action a € Acomm we collected a
total of 50 samples from two human users responding to the
robot’s requests. We used Gaussian kernel density estimation
to represent pg(- | @), with the bandwidths selected through
grid search with 5-fold cross validation.

To estimate the average cost c¢(x,a) for each pose x
and execution action a, we set the constant C' = 1 in the
definition of the cost function, and used a Support Vector
Machine (SVM) classifier, trained to predict the success or
failure of an execution, given a target pose. The training
set contained a total of 48 samples, 23 of which from the
successful examples demonstrated to build the CoProMP and
the remaining collected from further experiments. In these
experiments, the robot always tries to execute the motion
and the target pose is randomly selected by two human users.
The final dataset contained a total of 28 positive samples and
20 negative samples. The kernel coefficient and error term
penalty parameters were tuned using a grid search with 2-
fold cross validation.

D. Function approximation

We used an approximation of radial kernel to represent
@™ in our reinforcement learning algorithm. In particular,
we adopted the random kitchen sinks method of Rahimi and
Recht [16], [17], and used the implementation in the scikit-
learn' machine learning library for Python.

In order to determine an appropriate dimensionality for
the feature transformation, we ran multiple simulations and
observed the effects in the expected reward and number of
actions. We ran our RL algorithm for 30, 000 iterations, mea-
suring the average reward obtained every 2,500 iterations
across 2,500 episodes. Results were averaged over 40 runs
starting from different seeds, and are reported in Fig. 4.

As expected, higher feature dimensions result in better
performances both in terms of average reward and number
of actions executed. Note that, with 150 basis functions, the
reward and number of actions executed converge to values
close to -1 and 2.5, respectively. This indicates that, on
average, an episode will consist in one to two communication
actions followed by a successful execution action.

Based on the results obtained in simulation, we use a total
of p = 150 basis functions in our feature representation.

E. Experiments

We tested our system on the real Baxter robot, using the
parameters ¢ learned after 30, 000 iterations in the simulation
model, with p = 150 basis functions and the seed that
led to the best results. Specifically, we performed 10 trials
with a real user who was was given the freedom to choose
the starting position. The robot communicated its requests
through voice commands such as "Please raise your right

Thttp://scikit-learn.org/
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Fig. 4. Performance of the Q-learning algorithm for different feature
transformation dimensions. We ran the algorithm for 30,000 iterations,
measuring the average reward obtained every 2, 500 iterations across 2, 500
episodes. Results were averaged over 40 runs and the bars represent
the standard error. Note that 4(b) includes both the communication and
execution actions.

arm”. Table I summarizes the results obtained in terms of
the average reward and the number of actions executed by
the robot in each episode.

Two observations are in order. First of all, the robot is able
to execute successfully in all trials, even though the initial
pose of the human user varied significantly. This shows that
our approach is, indeed, able to indirectly control the target
pose by means of vocal commands. Second, the numerical
results (concerning reward and number of actions) are very
similar to those obtained in the simulation. This suggests
that, even though simple, the simulation model adopted was
capable of modeling the real task adequately.

TABLE I
RESULTS ACHIEVED WITH THE REAL ROBOT. PARAMETERS WERE
INITIALIZED AFTER 30, 000-STEP SIMULATION RUN. RESULTS ARE
AVERAGED OVER 10 TRIALS.

‘ Mean  Std
Total reward -1.5 0.67
Number of actions 3.5 0.67

% Successful executions 100 —
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(a)

Fig. 5. Sequence of steps in the task where the robot helps a human user putting on the right strap of a backpack. 5(a) The human user starts with his
right arm in a lowered position. 5(b) The human user raises his arm by request of the robot. 5(c) The robot putting the backpack on the human user.

V. CONCLUSIONS

In this paper we presented a novel approach that explores
the concept of adaptive indirect control through communica-
tion, in the context of human-robot collaborative tasks, where
the robot assists the human by executing a complex motion
that is successfully completed only upon reaching a target
pose that is controlled by the user.

Our approach allows the robot to engage in a process of
indirect control over the target pose, by voicing successive
requests to the human user. These requests direct the user
towards a target pose that allows for a successful execution
of the task. Moreover, this indirect control process also
considers the cost-benefit trade-off of the assistance requests.

We tested our approach in a real-world human-robot col-
laboration scenario using the Baxter robot, where the latter
helps a human user putting on a backpack. Results show that
our approach effectively allows a robot to indirectly control
the target pose through of vocal commands.

The approach proposed can be generalized to more com-
plex scenarios. In scenarios where Acye. includes multi-
ple execution actions, the reinforcement learning approach
computes the optimal indirect control policy that allows the
robot to select the best execution motion. In scenarios with
multi-step tasks, the state-space must include information
on the current state of the task, and the reward function
should penalize out-of-order state sequences. For example,
the approach generalizes to the task where the robot helps a
human dressing both straps of the backpack, and where the
robot is taught multiple strategies on how to put each strap.

This work also opens interesting directions for future
work. We believe the approach proposed is not limited to
human-robot interaction scenarios, and that it can be used
with generic agents. We envision applications in robot-robot
interaction scenarios where, due to integration issues, the
robots must communicate through a coarse set of commands.
There is also recent research in ad hoc teamwork that seeks to
develop strategies to enable a generic agent to quickly infer
the strategies of its teammates and act accordingly, towards
the joint completion of a common task [18]. The challenges
faced in this area bare a close resemblance to those in the
human-robot collaboration problems we focused on.
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