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T
his article proposes an architecture for an intelligent 
surveillance system, where the aim is to mitigate the 
burden on humans in conventional surveillance 
systems by incorporating intelligent interfaces, 
computer vision, and autonomous mobile robots. 

Central to the intelligent surveillance system is the 
application of research into planning and decision making 
in this novel context. In this article, we describe the robot 
surveillance decision problem and explain how the 
integration of components in our system supports fully 
automated decision making.  Several concrete scenarios 

deployed in real surveillance environments exemplify both 
the flexibility of our system to experiment with different 
representations and algorithms and the portability of our 
system into a variety of problem contexts. Moreover, these 
scenarios demonstrate how planning enables robots to 
effectively balance surveillance objectives, autonomously 
performing the job of human patrols and responders.

Toward Intelligent Decision Making
Combining recent research advances in computer vision, 
robot autonomy, and artificial intelligence (AI) has the poten-
tial to revolutionize surveillance technology. Consider the 
careful attention spent by security personnel to monitor 
numerous live video feeds from cameras that are presently 
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observing our parking lots, university campuses, and shopping 
malls. Imagine the monotonous patrols of armies of security 
guards through countless corridors. Deliberate over the diffi-
cult strategic decisions of where and how to allocate precious 
human resources, both in response to immediate security con-
cerns and in anticipation of future conditions. To maintain 
safety and security, the conventional surveillance system relies 
critically on human attention, action, and intelligence. Howev-
er, such reliance is untenable in a society where the trend is 
toward more cameras embedded in larger and more complex 
environments to defend against a growing array of potential 
threats (from burglary to natural disasters to terrorist attacks). 
Here, we advocate a shift toward reliance on autonomous sys-
tem components so that society may scale up to meet present-
day surveillance needs.

One aspect of this topic that has received considerable 
attention from researchers is real-time scene analysis. Systems 
have already been developed to autonomously analyze video 
streams in environments such as transportation networks [6], 
[27] and public spaces [5] to identify actors and characterize 
their behavior. Recent examples include IBM’s Smart Surveil-
lance System project [22] and Yao et al.’s system for coopera-
tive object tracking [30]. There are also approaches for 
activity interpretation [8], [12], [13], [20], [25], while other 
works are more focused on meeting low-bandwidth require-
ments by locally processing video-feed images [4]. Although 
these systems can autonomously extract relevant information 
for surveillance purposes, they are still heavily dependent on a 
team of human security personnel to perform such actions as 
covering areas that may be outside the range of the stationary 
sensor network and resolving situations that may require 
physical intervention. Our work aims to increase autonomy 
and to reduce the human burden by introducing autonomous 
mobile robots into the system.

Research in robot mobility has advanced to the point that 
robots now have the ability to navigate complex environments, 
patrolling as human guards would. Equipped with cameras 
and other sensors, they can also serve as mobile surveillance 
nodes to augment a network of statically situated cameras. For 
instance, a robot can provide temporary coverage of areas that 
may become critical because of camera failures or other anom-
alies. Moreover, robots have the mobility, sensors, and actua-
tors to respond directly to events detected over fixed camera 
streams, thereby leveraging real-time scene analysis.

To integrate these complementary research technologies 
effectively and to render robots truly autonomous requires a 
third key technology: intelligent decision making. Robots 
should choose their actions so as to fulfill a combination of 
objectives, given limited resources. This is often framed as a 
robot task selection and allocation problem [10] and has been 
approached through a variety of AI techniques, from logic-
based (classical) planning methods [9], to market-based 
(auction) solutions [15] and those relying on constraint opti-
mization [16]. An obstacle to applying such techniques 
here is that surveillance decisions are riddled with uncertain-
ty. Uncertainty is present in robots’ awareness because of 

imperfect sensing and localization as well as in environmental 
dynamics because of imprecise control and unpredictability 
about when security events may occur. This challenge leads 
us to examine state-of-the-art formalisms for modeling 
robots’ task dynamics and for planning under uncertainty—
formalisms that push the boundaries of robot autonomy.

The primary contribution of this work, however, is the inte-
gration of complementary research technologies from video 
surveillance, mobile robotics, and AI. We demonstrate the 
efficacy of our integration through a prototype system that 
includes a small number of robots and cameras deployed in 
realistic environments. A modular architecture and general 
framework for representing and communicating surveillance 
events makes our system a useful test bed for experiment-
ing with various research technologies. In contrast to past 
results in multirobot patrolling that employed human operators 
to orchestrate the robots’ behavior [7], we are able to achieve 
fully autonomous security robots capable of making decisions 
on their own, with the potential to help human operators.

Overview of the Surveillance Framework
We begin with a brief overview of our framework, which is 
motivated by a concrete example of a decision faced by a 
patrolling robot. This leads us to characterize the decision-
making problem as well as to structure our system in support 
of the implementation and testing of decision-theoretic plan-
ning for mobile surveillance robots.

Motivating Example
Imagine adding a robot to the observation environment 
shown in Figure 1. In contrast to the static cameras placed at 
fixed positions, the robot is capable of dynamically patrol-
ling the building. It can move from room to room, using its 

Figure 1. A staged indoor surveillance environment with the 
positions of the static cameras (red circles) and the common 
coordinate system for event location. 
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sensors to scan for anomalies that the static cameras might 
have missed and using its actuators to interact with the envi-
ronment in ways that a static camera cannot. The robot’s limi-
tation, however, is that it can occupy only one physical 
location at a time.

Consider that, late one night, the robot is patrolling the 
east corridor on its way to the elevator hallway. Suddenly, one 
of the fixed cameras detects a person moving in the north 
corridor. At this time of day, the north corridor has restricted 
access, arousing suspicion that someone is trespassing. 
Assuming this event is communicated to the robot across the 
network, the robot could turn around and proceed directly to 
that location. Alternatively, the robot could continue along to 
inspect the elevator hallway, which is also an important room 
in the building. This example illustrates the kind of relevant 

decisions that a patrolling robot could face, given its current 
status and the status of the surveillance system. The decision 
whether to respond immediately to an event or to continue 
patrolling should be made carefully and deliberately, since it 
could compromise the security of the building.

Modular System Design for Decision Making
In general, a mobile security robot will experience a sequence 
of decision making about where to go and what to do, as long 
as it is operating in the environment and events are being 
detected by the network. To increase the autonomy of the net-
worked robotic system, planning methodologies should con-
sider several relevant aspects within the decision-making 
problem, as summarized in Table 1.

In addition to accommodating various decision-making 
methodologies, an effective autonomous surveillance frame-
work needs to deal with a wide range of heterogeneous sen-
sors and actuators exchanging information in real time, e.g., 
differing robot platforms, lasers, cameras, microphones, and 
speakers. Therefore, we propose a modular framework for 
security inspection that divides the overall system into com-
ponents and defines a set of interfaces for component interac-
tion and communication. The system is versatile enough to 
allow for adaptable reuse as well as the incorporation of new 
functionalities (e.g., new sensor technologies).

Figure 2 diagrams our modular surveillance framework. 
Apart from the heterogeneous sensor and actuator modules, a 
human–machine interaction (HMI) module is included to 
display information (e.g., detected events) to the operator, to 
receive remote commands (e.g., sending a robot to a desired 
position), and to produce audible signals from each robot in 
the form of speech, whereby the robot can interact with peo-
ple in the environment.

Detecting and Disseminating Events
Events, such as a person requiring assistance or an intrusion, 
form the basis for all intelligent surveillance activities. In this 
section, we describe where these events come from and how 
they are automatically detected and represented in support of 
effective robot planning. For illustrative purposes, we focus 
our description on the trespassing event introduced in the 
“Motivating Example” section.

Image Processing
The multicamera system requires live video acquisition and 
transmission. High-resolution camera images need to be cap-
tured and received at a steady rate and reliably enough to 
 perform event detection. This involves high-bandwidth com-
putation, balanced across several high-performance servers, 
each processing the images in real time.

Our surveillance system integrates the technique proposed 
in [19] for both detecting people as they move around within 
parameters of the designated area and for sensing other 
events, such as a request for assistance or trespassing. Other 
image-processing algorithms could be plugged in to our sys-
tem since the framework is flexible, requiring only that new Figure 2. The modular design of our surveillance framework.
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Table 1. The challenges of surveillance  
decision making.
Challenge Explanation 

Constrained resources A robot has a finite operation 
time and cannot visit all locations 
instantaneously. 

Urgency/priority A trespassing event left  
unaddressed for too long can 
turn into a robbery. 

Uncertainty about  
event occurrences 

It is unknown when, where, and 
even if an event will occur. 

Uncertainty in decision  
consequences 

There is no guarantee that the 
robot will succeed in its actions, 
e.g., thwarting the trespasser. 

Uncertainty in the  
sensor data 

Imperfect detection methods 
may yield false positives and 
false negatives. 

Coordination of  
decisions 

A robot team should handle 
events in parallel, avoiding 
redundancy. 

Intermittent  
communication 

This can occur, for example, 
when robots traverse large and 
complex spaces with dead zones. 
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modules respect the interfaces to communicate with  connected 
modules. The processing is divided into two main phases.
1)  Human presence is detected by a background subtraction-

based algorithm; the person is subsequently tracked via 
data association between consecutive frames. 

2)  Human activity is detected by means of a classifier that 
analyzes a tracked person’s movements through optical 
flow computation. 
Table 2 shows the performance of our algorithm for 

detection of waving compared to some state-of-the-art  
techniques on the KTH action database (http://www.nada 
.kth.se/cvap/actions/). In the method employed, the tempo-
ral support of the classification of every sequence uses an 
event window size of 4 s (at 25 frames/s), and considers it a 
waving event if at least 60% of the single-frame classifications 
are positive in that sequence. More details and results of our 
method can be found in [19].

Continuing with our running example, Figure 3(a) 
highlights two cameras with overlapping fields of view in 
the area labeled North Corridor. Figure 3(b) illustrates 

how detection of a person on the image plane is translated 
into positions on the global coordinate frame of the sce-
nario (depicted using the Figure 1 axes). This coordinate 
system is shared by all robots, and image coordinates can 
be translated to it by means of homography-based trans-
formations. Along with the detected positions, we model 
uncertainties that capture the detection imprecision of the 
sensor itself [illustrated as ellipses in Figure 3(d)]. False 

Table 2. The accuracy of state-of-the-art  
methods for waving detection.
Technique Accuracy

Our method 91.7% 

Niebles et al. [20] 93% 

Ke et al. (1) [13] 88% 

Ke et al. (2) [12] 91.7% 

Schüldt et al. [25] 73.6% 

Pos (572, 623)

Pos (22.0, 10.9)

Pos (309, 382)

Pos (21.5, 11.1)

(b)

(a)

(e)

(d)

(c)

Figure 3. Our running example of a trespassing event detection: images acquired by (a) camera 59 and (b) camera 19, with 
detections; (c) field of view and detection of (d) camera 59 and field of view and detection of camera 19; (e) a scenario abstraction 
map, where the red zone corresponds to a restricted area, the white zones to accessible areas, and the dark zones to areas unsuitable 
for robot event attendance (e.g., cluttered zones).
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positives (where the detected event did not actually 
occur) and false negatives (where an event was missed) 
are thereby modeled probabilistically. Once detected, the 
events are sent to the Aggregation and Filtering block, as 
illustrated in Figure 2.

Event Aggregation and Filtering
To mitigate the noisy measurements produced by state-of-the-
art image-processing algorithms and to improve the consis-
tency of human detection, we aggregate information from 
multiple overlapping cameras. In our system, cameras provide 
events as three-dimensional positions and orientations with 
their associated uncertainties (modeled as a 6 × 6 covariance 
matrix), which are then aggregated together in a centralized 
fashion. We keep track of the position of every event detected, 
and once new samples of camera feedback are received, data 
association is used to match detections of previously identified 
actors or to distinguish new actors. Data association in our 
multicamera scenario is solved by methods such as Kullback–
Leibler divergence [14].

Figure 3 shows how overlapping cameras can capture the 
same person and will need the multiple channels of feedback to 
be combined by the aggregation module. The aggregation 
module receives samples of feedback asynchronously from 
multiple cameras and updates the information of the corre-
sponding tracks accordingly (or creates new tracks when 
required). The event-filtering system recognizes the tracked 
detection as trespassing by way of a predefined abstraction of 
the scenario map wherein some areas are marked as forbidden 
[Figure 3(c)]. Once it has been noticed that a person is tres-
passing or that there is other relevant human activity, the sys-
tem generates and transmits a corresponding metaevent to the 
mobile robots.

Autonomous Mobile Robot Responders
To play the part of human security guards, mobile robots 
should be capable of responding to surveillance events regard-
less of when or where they may occur. The random nature of 

such events induces a problem of decision making under 
uncertainty at various levels of abstraction. The robot team 
should cooperatively decide which robot, if any, should 
respond to a new event (task allocation); robots should 
respond to events in the most efficient manner (task execu-
tion); and each robot should routinely decide where to posi-
tion itself in anticipation of an event (navigation). In this 
section, we describe how the decision-making problems in 
our surveillance framework are modeled symbolically, 
enabling their treatment through automated planning and 
reasoning mechanisms.

Abstracting the System and Its Environment
Consider modeling the autonomous robots’ decisions by sim-
ulating in detail the many possible detections of events and the 
various actuations of motors by which each robot could travel 
to all of the possible event locations. Because of the great many 
continuous variables involved and the unpredictability of the 
events, the original optimization problem derived from mak-
ing low-level decisions may be intractable. To tackle this deci-
sion-making problem, it is necessary to describe it at a coarser 
level of abstraction, including only as much information as 
that which is deemed relevant to differentiate between the out-
comes of the possible decisions of the robots.

First, we partition the environment into a discrete set of 
locations that can be encoded as a topological graph onto 
which the position of the robots and the detected events 
can be mapped. Second, we discretize the space of possible 
controls for the robots as abstract movement-actions. From 
each node in the topological graph (describing the location 
of each robot), there are as many movement actions as 
adjacent nodes. These actions invoke the robot’s lower-level 
path planner, driving it to a predefined waypoint associated 
with a graph node (though those actions may fail, leading 
to nondeterministic transitions). In particular, we assume 
that the robots are equipped with onboard sensors for 
localization and navigation. Standard probabilistic localiza-
tion methods and path-planning algorithms can be used.

The environment of our running example shown in Fig-
ure 3, when discretized in the above manner, results in a 
topological graph describing reachable locations, depicted in 
Figure 4. This discrete representation of location is then 
coupled with additional symbolic variables that impact a 
robot’s decisions, for instance, the type and nature of each 
detected event (e.g., trespassing). The selection of symbolic 
variables depends on the desired behavior of the system (as 
we explain in the “Formalizing the Decision-Making Prob-
lem” section). Moreover, different automated planning 
mechanisms may expressly depend on different representa-
tions of the environment. For instance, while logic-based 
planners rely on predicate-based representations of these 
variables, decision-theoretic planners can operate directly 
over integer-valued discrete representations. The common 
thread, however, is a discrete representation of the state of 
the system as a whole and of the decisions (or actions) that 
can be performed at the time of each event.
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Figure 4. (a) A map of the environment of our running example 
partitioned into areas of interest overlaid with the laser-based 
map used for robot navigation and (b) the topological graph 
corresponding to this discretization that is used in the decision-
making block of our system.
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Formalizing the Decision-Making Problem
Equipped with a symbolic description of the system and of the 
capabilities of each robot, we can then formalize the decision-
making problem. Let s St !  represent the discrete state of the 
system at some discrete time t, which is typically a tuple of 
symbolic variables. At each time t, the robot(s) must select an 
action ,a At t!  where At  represents the set of possible sym-
bolic decisions available at that time. The execution of at  influ-
ences the resulting state at the next decision episode st 1+ .

In our running example, one way of modeling the state is 
, , , , ,s r x x bt t t t t

1 6fG H=  where rt  represents the topological 
position of the robot (within the possible alternatives repre-
sented in Figure 4); x , ,1 6f  are the states of each topological 
node, which could be modeled, for instance, as xi !   
{Unknown, Clear, Intruder}; and bt  represents the battery 
level of the robot. Additionally, the actions at each time could 
be the high-level navigation movements between nodes of 
the topological graph as well as other possible interactions 
of the robot with its environment, e.g., A = {Up, Down, Left, 
Right, ExpelIntruder}.

Given these symbolic representations of states and actions, 
the general decision-making process can be cast as the follow-
ing optimization problem: at each time t, given the history of 
states and actions , , , , , ,s a s a s at t0 0 1 1 1 1fG H- -  select a new 
action at  to satisfy one of the following optimization targets:

 ●  Maximize a target utility function of future visited states 
and selected actions (utility-based planning).

 ●  Minimize the number of decisions needed to reach a cer-
tain goal state (goal-directed planning).
This formulation of the decision-making process is general 

enough to encompass most logic-based and decision-theoretic 
planning methodologies.

Application of Decision-Theoretic Planners
As suggested in the “Autonomous Mobile Robot Responders” 
section, decision-theoretic planning methods are especially 
applicable to the type of problems involved in our multiagent 
surveillance system since they account for multiple sources of 
uncertainty in the environment. As such, we have opted to 
apply these methods to obtain decision-making policies for the 
robot team in our implementation of the surveillance system.

Most decision-theoretic methods are based on the concept 
of Markov decision processes (MDPs) or its extensions [3]. 
An MDP is an instantiation of the decision-making process 
defined in the “Formalizing the Decision-Making Problem” 
section, where the state transitions after executing a team 
action are modeled with a transition probability function and 
the relative priorities of each state and action (desired behav-
ior) are encoded by a reward function. The objective in an 
MDP is to obtain a particular mapping of states to actions, 
:S A"r  (a policy) that maximizes the expected accumulat-

ed reward over a certain (possibly infinite) number of future 
steps (i.e., utility-based planning).

The definition of the components of an MDP is domain 
dependent. For instance, in our running example, the transi-
tion function depends on the probability that the robot suc-

cessfully completes its navigation actions and on the 
probability that an intruder appears in a room. Each time the 
robot visits a room, its state changes to either Clear or Intrud-
er. If the robot has not visited a room for some time, its state 
could be reset to unknown, symbolizing a lack of information 
regarding its occupancy.

Furthermore, a positive reward could be assigned to a 
state in which all rooms are known to be clear, and, likewise, 
a negative reward to a room that has an intruder state. No 
reward would be given for unknown state rooms. Since the 
robot’s policy attempts to maximize reward, this would 
induce the robot to try to visit all rooms as fast as possible 
(automatically determining an optimal patrol order), while at 
the same time prioritizing its response to intruder states. A 
more specific definition of the transition and reward models 
for a surveillance task that is analogous to our running exam-
ple can be found in [29] and in the supplementary material 
accompanying this article in IEEE Xplore.

In some applications, considering the effect of limited or 
noisy information may be important for decision making. 
Partially observable MDPs (POMDPs) are an extension of 
MDPs that also account for uncertainty when observing the 
state [26], and they are appropriate when the cameras pro-
duce unreliable detections. Although calculating policies for 
POMDPs is computationally more demanding, we demon-
strate in the section “Event-Driven POMDPs for Multirobot  
Surveillance” that this calculation is feasible for a handful of 
robots, and we discuss in the “Limitations and Extensibility” 
section how such models could be scaled to larger autono-
mous surveillance problems.

Case Studies
In the preceding sections, we have illustrated the various 
aspects of our autonomous robot surveillance framework 
using a simple running example. We now turn to several con-
crete case studies, wherein we formulate and solve the deci-
sion-making problem using state-of-the-art planning 
techniques and deploy the resulting plans in real robots. The 
case studies involve different environments, events, robot 
capabilities, and planning algorithms, showcasing the general-
ity of our framework. Specific details on the models used can 
be found in the supplementary material accompanying this 
article in IEEE Xplore.

Common Implementation of Components
With the aim of portability and flexibility, we have imple-
mented our surveillance framework, described in the “Over-
view of the Surveillance Framework” section, on top of the 
widely adopted Robot Operating System (ROS) infrastructure 
[24]. Our implementation consists of three macroblocks 
communicating by means of ROS topics (see Figure 5). First, 
a robot macroblock is run on each surveillance robot, acting 
as its intelligence. The modules for robot localization and nav-
igation of our framework described in Figure 2 are here 
implemented by means of the ROS Navigation Stack, which 
provides Monte Carlo localization and standard algorithms to 
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navigate waypoints in a map. Moreover, the Decision Making 
module in Figure 2 is here implemented by means of MDP or 
POMDP planners (see the Markov Decision Making package 
at http://wiki.ros.org/markov_decision_making), which will 
be described in the “Event-Driven POMDPs for Multirobot 
Surveillance” section. Those planners are in charge of deter-
mining the best action for each robot and of sending the cor-
responding command to the navigation components.

The server macroblock is in charge of detecting events and 
is run on one of several physical machines wired to the net-
work. This macroblock receives the image streams from all the 
cameras (including cameras on board the robots) and performs 
the algorithms described in the “Detecting and Disseminating 
Events” section to generate events. Those events are communi-
cated to the robots and to the third macroblock, HMI, which 
handles all interactions with the human operators. This module 

is distributed into different applications. Here, we have imple-
mented a central videowall application that allows operators to 
select image streams from the different cameras. Information 
about detected events is overlaid onto the images (as in Figure 6).  
We have also implemented an alternative application for mobile 
devices (tablets) where the operators can check events. More-
over, by interacting with a videowall displayed on their mobile 
devices, operators are able to send the robots to specific loca-
tions they consider relevant for surveillance. Autonomous 
robot surveillance is a subset of each of the following four types 
of activities.

Patrol of the Environment
The robots should maintain close surveillance of all reachable 
areas in the environment, paying particular attention to those 
most sensitive (e.g., with valuable items or not covered by 
static cameras). Given the dynamic nature of the environ-
ment, robots should continue to visit all areas over the course 
of the entire surveillance mission, not neglecting any area for 
too long.

Assistance to Visitors
As noted in the “Detecting and Disseminating Events” sec-
tion, the camera network can automatically detect events 
related to human activity, as in the case of a visitor requesting 
assistance (by waving to a camera). In response to such an 
event, one of the robots should meet the visitor and perform a 
simple interaction, with the intent of aiding the visitor by 
engaging in a simple dialog and then guiding the person to an 
indicated destination.
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Figure 6. An interactive display showing the restricted zone at a 
location in a shopping center and a trespassing response, with 
the robot speaking to the intruder.
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Security of Restricted Areas
Another event related to human activity is triggered whenever 
a trespassing person is detected in a restricted area. In this situ-
ation, one of the robots should navigate to the corresponding 
position of the detection and warn the trespasser, potentially 
alerting human security to help resolve the situation.

Emergency Response
We also consider emergency situations that require an imme-
diate response by the robots. For example, if a fire alarm 
sounds in the operating environment, robots can use addi-
tional sensors to verify whether or not the alarm is false and, 
if not, can even help put out the fire if capable.

MDPs for Single-Robot Surveillance
In the first set of case studies, we apply an MDP technique to 
control a single robot following the behaviors described previ-
ously. The MDP formulation is described in the “Abstracting 
the System and Its Environment” section, with the robot 
selecting new actions whenever an event occurs or its position 
changes. The state space is factored into multiple variables, 
one for each possible event occurrence in the system (e.g., 
assistance requests, trespassing situations, or emergencies) 
and one for the position of the robot. The robot’s policy is 
computed using an MDP model whose transition probabili-
ties were inferred from a combination of experimental data 
and statistical inference and whose rewards were hand-tuned 
to balance the objectives. Analytical experiments have shown 
that the MDP approach remains tractable over long time 
horizons, though the performance is crucially dependent on 
the accuracy of bounded predictions of event likelihoods. 

Further details of our surveillance MDP model specifications 
can be found in the supplementary material accompanying 
this article in IEEE Xplore.

Deployment in a Test Bed
First, we performed experiments in the scenario of Figure 1, 
which is a surveillance test bed on the floor of our research 
institute [2] that includes 12 static cameras, three servers, and 
one Pioneer 3-AT robot. The Pioneer 3-AT was a four-wheel-
drive robot equipped with a SICK laser, a webcam, and speak-
ers and programmed to navigate around the scenario, to 
survey remote events, and to speak warning messages. The 
map of the scenario, together with the corresponding topo-
logical map, is shown in Figure 4. Here, a visitor can ask for 
assistance by waving to the camera in the elevator hallway (as 
if he had just entered the floor).

Figure 7 shows a trajectory of waypoints visited by the 
robot during the execution of its computed policy, starting 
with the response to a waving event. In the absence of events, 
the robot behaved as expected, going around the floor and 
visiting all the relevant rooms. However, when the robot 
decided to assist a visitor who was waving, it navigated to the 
elevator hallway, where the waving was directly detected, 
without entering intermediate rooms.

We also simulated the MDP model to analyze the balance 
of the policy responding to surveillance events while 
 patrolling. We ran the MDP for 100 steps, triggering fire 
events uniformly at random at the coffee room, and repeated 
500 runs for each value of triggered fires. Figure 8 shows the 
percentage of extinguished fires and the number of the robot’s 
patrol rounds. The robot performed its patrol rounds and 
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Figure 7. A robot’s assistance to a visitor (with color coding the same as the topological graph described in Figure 4): (a) When a visitor 
seeks assistance (waving to a camera), (b) the robot stops patrolling and goes to the event position and (c) prompts the visitor to 
interact. Once the visitor tells the robot his destination, (d) and (e) the robot leads him there, (f) notifying him when the goal is reached.
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only stopped them to attend and extinguish fires. As expect-
ed, as there were more fires, the robot was able to perform 
fewer rounds. Besides, some fires had been triggered close to 
the end of the experiment, leaving the robot with no time to 
reach the coffee room. Therefore, as the number of fires 
increased, the extinguishing rate gradually degraded. 

Deployment in a Shopping Center
We performed a similar experiment in a more realistic envi-
ronment located in a shopping mall. As a first step toward 
integration, we deployed our system in the technical corridors 
beneath the mall that are closed to the public. The map of the 
scenario and its topological abstraction are shown in Figure 9.  
Here, in addition to waving events, trespassing events were 
introduced. (A video summarizing the tests performed can be 
viewed at https://youtu.be/Ivx908SSzlk.)

In this scenario, three functionalities of the system were 
tested to assess its capabilities to respond to different situa-

tions using a single balanced MDP policy. In the absence of 
events, the robot began moving around the environment, 
selecting the next area to visit among those defined in Fig-
ure 9(a) and ensuring that key areas were visited frequently. 
During the robot’s patrol, we triggered random trespassing 
events by entering the restricted technical corridor (see Fig-
ure 6). Each time, the robot stopped its patrol, its policy dictat-
ing that it move toward the intruder’s detected position to 
intervene. Upon arrival, the robot requested the intruder to 
“leave the area immediately.” After he was gone, the robot 
resumed its patrol. We also triggered waving events to test the 
robot’s ability to perform visitor assistance. These tests consist-
ed of a person entering a camera’s field of view and hand-wav-
ing to request help. In response to the waving detection, the 
robot stopped patrolling and went to the position of the event 
to interact with the visitor, prompting the person to select 
among several possible areas in the environment. Once the 
visitor selected a desired destination, the robot led the way.

We carried out a third deployment of our multiagent sur-
veillance system in the commercial, publicly accessible areas 
of the same shopping mall (see Figure 10). The functionalities 
and behaviors obtained were qualitatively identical, but the 
autonomous navigation of the robot was made considerably 
more difficult due to the characteristics of the environment 
and the robot’s hardware limitations (e.g., the glass panes of 
storefronts sometimes eluded its laser range finder).

Event-Driven POMDPs for Multirobot Surveillance
In the next experiments, we adopted an alternative decision-
making approach suitable for multirobot settings with partial 
observability of event occurrences. In contrast to the MDP 
model, a POMDP explicitly considered that the event detec-
tor (and hence robots’ observations) was susceptible to errors. 
Such errors may come in the form of false positive detections 
(e.g., incorrectly detecting a person in an empty room) or 
false negative detections (e.g., failing to detect a person).
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Figure 9. The topological map used at the shopping mall. (a) The defined selected areas designated for the robot to visit. (b) The 
topological connections.
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Explicitly modeling observation errors, in combination with 
the decisions of multiple robots, comes at a computational 
overhead. A conventional multirobot POMDP is notoriously 
harder to solve than a regular MDP. Here, we circumvented the 
added complexity by considering the hierarchical decision-
making structure shown in Figure 11. The lowest level of deci-
sion making in our system handles the navigation of each robot 
to its desired poses (i.e., motion planning), and this is done 
internally by the ROS Navigation Stack. Then, a set of tasks 
defines the behaviors that each robot is capable of per-
forming individually. Each task is not necessarily bound to 
a particular decision-making formalism; in our case, we imple-
mented tasks either as manually designed finite-state machines 
or single-robot (event-driven) POMDPs.

The cooperative decision-making problem in this scenario 
lies at the top of this hierarchical organization, and concerns 
the allocation of tasks between the robots as a response to the 
discrete detections of the sensor network. We cast the prob-
lem of multirobot coordination in our surveillance frame-
work as an event-driven (asynchronous) multirobot POMDP 
(MPOMDP). MPOMDPs [23] are a straightforward exten-

sion of POMDPs to multirobot systems with free communi-
cation (which is the case in our surveillance system since all 
the robots share their information freely). As in an MDP, the 
POMDP model defines a set of states and actions; but it also 
defines a set of observations, which represent the possible 
incomplete or uncertain information that the robots have 
about their environment.

The actions in this multirobot model correspond to the 
abstract tasks (or behaviors in the “Common Implementation 
of Components” section) that each robot must perform indi-
vidually: patrol of the environment, assistance to visitors (the 
closest robot to the visitor should respond to the event), sur-
veillance incident response (warning trespassers in restricted 
areas), and emergency response. This is the highest priority 
task, and it should prompt robots to move to the position of the 
detected emergency. As with the single-robot MDP, the state 
space is factored into multiple variables, this time with separate 
variables for the local state of each robot, whether or not it is 
powered on, and whether or not it is busy performing a partic-
ular task (other than patrolling). As before, the rewards for each 
state corresponded to the relative priorities of each of the three 

Cooperative Task Allocation
(Event-Driven MPOMDP)

Visitor Assistance
(FSM)

Surveillance Incident
Response (FSM)

Emergency
Response (FSM)

Patrol Task
(Event-Driven POMDP)

Navigation
(ROS)

Coordination Level

Task Level

Motion Control Level HRI (ROS)

Figure 11. The various levels of decision making involved in our multirobot case study for autonomous surveillance. FSM: finite-state 
machine; HRI: human–robot interface.

Figure 10. A robot patrolling public areas of the shopping mall.
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respective active events. Finally, the observations of our 
MPOMDP included the detection of events themselves. There 
was also a set of robot-specific observations (also mapped from 
events) that were communicated between robots so that each 
one could inform another of its own local state (see the supple-

mentary material accompanying this  article in IEEE Xplore for 
more details on the models).

In Figure 12, we show the timeline of a trial execution of our 
event-driven MPOMDP policy. That policy was computed for 
the same test-bed scenario described in Figure 4 but using two 
Pioneer 3-AT robots. In the trial, the detection of a trespasser in 
a restricted area prompted one robot to inspect that position by 
taking the surveillance incident response action at step 1. 
Meanwhile, the other robot continued to patrol the environ-
ment. In step 2, an assistance request was detected. Since one of 
the robots was already busy taking care of the trespasser, the 
remaining robot (robot 1) decided to assist the visitor. After-
ward, the robot went back to patrolling the environment until, 
at step 4, a fire detection was simulated, which caused both 
robots to abandon their active tasks and address the emergency 
immediately. The total runtime of this trial (19 min, 18 s) was 
limited only by the battery lifetime of each robot.

Figure 13 depicts simulation results to assess our event-
driven MPOMDP policy for the assistance of visitors. We per-
formed experiments of fixed time length (4 h each) while 
increasing the probability of false negative detections, i.e., 
failing to detect visitor assistance requests. Then we measured 
the rate of successful visitor assistance episodes and the wait-
ing times for those, for both the event-driven POMDP as well 
as for a baseline MDP (that assumes full observability). The 
results showed that, as the probability of false negatives 
increased (and therefore the reliability of the camera network 
decreased), the POMDP policy was able to successfully 
respond to more assistance requests than the MDP baseline, 
since the former explicitly considered observations as sto-
chastic, and reasoned over the possibility that an undetected 
person was waiting for assistance. Even with complete unob-
servability (i.e., without ever being able to observe a request 
for assistance through the camera network), the POMDP pol-
icy still drove the robot to periodically check for any possible 

1

0.8

0.6

0.4

0.2

0

150

100

50

0

0.0 0.2 0.4 0.6 0.8 1.0
Assistance Request

False Negative Probability [Pr (f l eassistance)]

(a)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Assistance Request

False Negative Probability [Pr (f l eassistance)]

S
uc

ce
ss

fu
l A

ss
is

ta
nc

e
E

pi
so

de
s 

(R
el

at
iv

e 
Fr

eq
ue

nc
y)

W
ai

tin
g 

T
im

e 
fo

r
S

uc
ce

ss
fu

l E
pi

so
de

s 
(s

)

Event-Driven MPOMDP MDP Baseline

Figure 13. The test-bed simulations for multirobot surveillance, 
increasing the probability of false negative detections of 
assistance requests (4 h for each simulation): (a) average values 
of the rate of successful assistance episodes; (b) a boxplot of the 
visitor waiting times.

Robot 1 Actions
Robot 2 Actions

Actions

Emergency Response

Surveillance Incident Response

Assist Person

Patrol

0 200 400 600 800 1,000

Em
er

ge
nc

y

Per
so

na
l A

ss
ist

an
ce

 R
es

olv
ed

Ass
ist

an
ce

 R
eq

ue
st

Tre
sp

as
sin

g 
Det

ec
tio

n

0 1 2 3 4
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visitors. In Figure 13(b), the waiting times for assisted visitors 
are also shown to be relatively independent of the reliability of 
the sensors, as there was no statistically significant difference 
between the respective distributions. This means that the 
POMDP policy induces an efficient patrol strategy that mini-
mizes the risk that a visitor is left waiting for too long.

Limitations and Extensibility
The prototype deployments documented in the preceding 
sections provide proof of concept on which future studies can 
build and extend beyond the system’s present limitations. 
These limitations include, for instance, the number of robots, 
the richness of scenarios, and the scope of the deployment. 
These are not indicative of shortcomings of the surveillance 
framework itself, but are rather due to the limited resources 
over the relatively short term that this project was carried out. 
Given substantial supplemental support as well as the neces-
sary permissions, a natural next step would be to operate the 
surveillance robots in public areas of the shopping center, 
leading to a more comprehensive evaluation of the perfor-
mance of the system as a whole.

One might also consider limitations imposed by the 
robots’ decision-theoretic planning methods. For instance, 
POMDPs have the reputation of being hard to scale. Fortu-
nately, we can mitigate the computational increase com-
monly associated with adding more robots or surveilling 
larger areas by employing recent research advances, such as 
factored models [11], [21], decoupling [28], and hierarchi-
cal planning [1], [17]. More advanced methods following 
these paradigms are well accommodated by the surveillance 
framework, which already has the capacity to decentralize 
the robots’ planning and awareness and to represent surveil-
lance tasks with varying degrees of abstraction. In particular, 
note that we exploited in our case studies both factored and 
hierarchical models (see the supplementary material accom-
panying this article in IEEE Xplore for more details).

Another challenge that could be perceived as a limitation of 
the current methods used to make robot surveillance decisions 
is the specification of effective MDP parameters (i.e., state fea-
ture, transition probabilities, and rewards). Such models are 
general enough to induce the complex behavioral policies that 
we have demonstrated and a wide variety of other robot behav-
iors. However, prescribing accurate probabilities is easier said 
than done in a real surveillance environment outside of the lab-
oratory, where we have the limited ability to collect data with 
the real robots. This has since led us to consider more sophisti-
cated modeling techniques that employ statistical inference on 
easy-to-collect parameters to help derive reasonable settings for 
hard-to-collect parameters [29]. Similarly, we have found it 
nontrivial to select rewards that adequately balance competing 
surveillance objectives. Though preliminary advances have 
been made, these issues warrant further research.

Conclusions
The framework we have developed constitutes an important 
step toward fully autonomous surveillance. We introduce 

into the conventional surveillance system mobile robots that 
have the potential to alleviate the tasks of human operators. 
Our robots embody intelligent surveillance nodes capable of 
pursuing a variety of surveillance activities and of deciding 
among activities in real time based on the occurrence and 
urgency of events in a dynamic and uncertain environment. 
Underlying the robots’ autonomy is a framework architecture 
that automatically detects anomalies, aggregates and filters 
detections to interpret them as events, transmits those events 
to the robot, and responds by intelligent reasoning, naviga-
tion, and physical interaction.

This is all made possible by leveraging several complemen-
tary research technologies, such as computer vision, robot 
automation, and intelligent decision making, and integrating 
them into a cohesive, modular design. Our case studies dem-
onstrate a progression toward increasingly complex scenarios 
in increasingly realistic surveillance environments, whereby 
we have been able to take our system out of the laboratory 
and into a shopping center.

However, the primary benefit of our framework is that it 
serves as a research platform with which to apply decision-
making formalisms and techniques to real robot problems. 
Autonomous surveillance is a rich domain wherein resource 
constraints, uncertainties, and competing objectives provide 
significant challenges that can be addressed through decision-
theoretic planning. This has driven us to develop solutions 
using MDPs and POMDPs as described in our case studies, 
pushing the state of the art and developing novel advances for 
planning in real-world settings [17], [18], [29].
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